skip to main content
research-article
Public Access

High-Performance Computing with Quantum Processing Units

Authors Info & Claims
Published:17 March 2017Publication History
Skip Abstract Section

Abstract

The prospects of quantum computing have driven efforts to realize fully functional quantum processing units (QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs can be integrated into current and future HPC system architectures by accounting for functional and physical design requirements. We identify two integration pathways that are differentiated by infrastructure constraints on the QPU and the use cases expected for the HPC system. This includes a tight integration that assumes infrastructure bottlenecks can be overcome as well as a loose integration that assumes they cannot. We find that the performance of both approaches is likely to depend on the quantum interconnect that serves to entangle multiple QPUs. We also identify several challenges in assessing QPU performance for HPC, and we consider new metrics that capture the interplay between system architecture and the quantum parallelism underlying computational performance.

References

  1. Ali Javadi Abhari, Arvin Faruque, Mohammad Javad Dousti, Lukas Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, Fred Chong, Margaret Martonosi, Martin Suchara andKen Brown, Massoud Pedram, and Todd Brun. 2012. Scaffold: Quantum Programming Language. Technical Report. Retrieved from ftp://ftp.cs.princeton.edu/techreports/2012/934.pdfGoogle ScholarGoogle Scholar
  2. Daniel S. Abrams and Seth Lloyd. 1997. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 13 (Sep. 1997), 2586--2589.Google ScholarGoogle ScholarCross RefCross Ref
  3. James Ang, Keren Bergman, Shekhar Borkar, William Carlson, Laura Carrington, George Chiu, Robert Colwell, William Dally, Jack Dongarra, Al Geist, Gary Grider, Rud Haring, Jeffrey Hittinger, Adolfy Hoisie, Dean Klein, Peter Kogge, Richard Lethin, Vivek Sarkar, Robert Schreiber, John Shalf, Thomas Sterling, and Rick Stevens. 2010. Top Ten Exascale Research Challenges. Technical Report. DOE ASCAC Subcommittee Report.Google ScholarGoogle Scholar
  4. Steve Ashby, Pete Beckman, Jackie Chen, Phil Colella, Bill Collins, Dona Crawford, Jack Dongarra, Doug Kothe, Rusty Lusk, Paul Messina, Tony Mezzacappa, Parviz Moin, Mike Norman, Robert Rosner, Vivek Sarkar, Andrew Siegel, Fred Streitz, Andy White, and Margaret Wright. 2010. The Opportunities and Challenges of Exascale Computing. Technical Report. Summary Report of the Advanced Scientific Computing Advisory Committee Subcommittee.Google ScholarGoogle Scholar
  5. Bela Bauer, Dave Wecker, Andrew J. Millis, Matthew B. Hastings, and Matthias Troyer. 2016. Hybrid quantum-classical approach to correlated materials. Phys. Rev. X 6, 3 (Sep. 2016), 39.Google ScholarGoogle Scholar
  6. A. Broadbent, J. Fitzsimons, and E. Kashefi. 2009. Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science. 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martn-Lpez, Nicholas J. Russell, Joshua W. Silverstone, Peter J. Shadbolt, Nobuyuki Matsuda, Manabu Oguma, Mikitaka Itoh, Graham D. Marshall, Mark G. Thompson, Jonathan C. F. Matthews, Toshikazu Hashimoto, Jeremy L. OBrien, and Anthony Laing. 2015. Universal linear optics. Science 349, 6249 (2015), 711--716.Google ScholarGoogle Scholar
  8. Andrew M. Childs and Wim van Dam. 2010. Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1 (Jan 2010), 1--52.Google ScholarGoogle ScholarCross RefCross Ref
  9. Venkat R. Dasari, Ronald J. Sadlier, Ryan Prout, Brian P. Williams, and Travis S. Humble. 2016. Programmable Multi-Node Quantum Network Design and Simulation. Proc. SPIE 9873, Quantum Information and Computation IX, 98730B (May 19, 2016).Google ScholarGoogle Scholar
  10. D. Deutsch. 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. Ser. A 400 (July 1985), 97--117.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. H. Devoret and R. J. Schoelkopf. 2013. Superconducting circuits for quantum information: An outlook. Science 339, 6124 (2013), 1169--1174.Google ScholarGoogle Scholar
  12. D. P. DiVincenzo. 2000. The physical implementation of quantum computation. Fortschr. Phys. 48 (2000), 771783.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Geist and R. Lucas. 2009. Major computer science challenges at exascale. Int. J. High. Perform. Comput. Appl. 23 (2009), 427436. Issue 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’13). ACM, New York, NY, 333--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Charles D. Hill, Eldad Peretz, Samuel J. Hile, Matthew G. House, Martin Fuechsle, Sven Rogge, Michelle Y. Simmons, and Lloyd C. L. Hollenberg. 2015. A surface code quantum computer in silicon. Sci. Adv. 1, 9 (2015), e1500707.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly. 2015. Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. 3 (Feb. 2015), 024010.Google ScholarGoogle ScholarCross RefCross Ref
  17. T. S. Humble, A. J. McCaskey, R. S. Bennink, J. J. Billings, E. F. DAzevedo, B. D. Sullivan, C. F. Klymko, and H. Seddiqi. 2014. An integrated programming and development environment for adiabatic quantum optimization. Comput. Sci. Discov. 7, 1 (2014), 015006.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, and others. 2011. Quantum annealing with manufactured spins. Nature 473, 7346 (2011), 194--198.Google ScholarGoogle Scholar
  19. N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang Kim, Thaddeus D. Ladd, and Yoshihisa Yamamoto. 2012. Layered architecture for quantum computing. Phys. Rev. X 2, 3 (2012), 031007.Google ScholarGoogle ScholarCross RefCross Ref
  20. Ivan Kassal, James D. Whitfield, Alejandro Perdomo-Ortiz, Man-Hong Yung, and Alán Aspuru-Guzik. 2011. Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62, 1 (2011), 185--207.Google ScholarGoogle ScholarCross RefCross Ref
  21. Volodymyr Kindratenko, George K. Thiruvathukal, and Steven Gottlieb. 2008. High-performance computing applications on novel architectures. Comput. Sci. Eng. 10, 6 (2008), 13--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Emmanuel Knill. 1996. Conventions for Quantum Pseudocode. Technical Report. Technical Report LAUR-96-2724, Los Alamos National Laboratory.Google ScholarGoogle Scholar
  23. J. M. Kreula, S. R. Clark, and D. Jaksch. 2015. A Quantum Coprocessor for Accelerating Simulations of Non-equilibrium many Body Quantum Dynamics. arXiv:1510.05703 {quant-ph}.Google ScholarGoogle Scholar
  24. Rodney van Meter and Mark Oskin. 2006. Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. 2, 1 (2006), 31--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong. 2011. Quantum Computing for Computer Architects, (2nd ed.). Morgan 8 Claypool Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C. Monroe and J. Kim. 2013. Scaling the ion trap quantum processor. Science 339, 6124 (2013), 1164--1169.Google ScholarGoogle Scholar
  27. Michael A. Nielsen and Isaac L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. OBrien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5 (Jul. 2014).Google ScholarGoogle Scholar
  29. Kamyar Saeedi, Stephanie Simmons, Jeff Z. Salvail, Phillip Dluhy, Helge Riemann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, John J. L. Morton, and Mike L. W. Thewalt. 2013. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 6160 (2013), 830--833.Google ScholarGoogle Scholar
  30. Barry I. Schneider. 2015. The impact of heterogeneous computer architectures on computational physics. Comput. Sci. Eng. 17, 2 (Mar 2015), 9--13.Google ScholarGoogle ScholarCross RefCross Ref
  31. Peter Selinger. 2004. Towards a quantum programming language. Math. Struct. Comput. Sci. 14 (8 2004), 527--586. Issue 04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Peter W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 5 (1997), 1484--1509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Daniel R. Simon. 1997. On the power of quantum computation. SIAM J. Comput. 26, 5 (1997), 1474--1483. DOI:http://dx.doi.org/S0097539796298637 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Darshan D. Thaker, Tzvetan S. Metodi, Andrew W. Cross, Isaac L. Chuang, and Frederic T. Chong. 2006. Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing. SIGARCH Comput. Archit. News 34, 2 (May 2006), 378--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rodney Van Meter, Thaddeus D. Ladd, Austin G. Fowler, and Yoshihisa Yamamoto. 2010. Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quant. Inf. 8, 01n02 (2010), 295--323.Google ScholarGoogle ScholarCross RefCross Ref
  36. Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. 2001. Efficient load balancing for wide-area divide-and-conquer applications. SIGPLAN Not. 36, 7 (Jun. 2001), 34--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Dave Wecker and Krysta M. Svore. 2014. LIQUID: A Software Design Architecture and Domain-Specific Language for Quantum Computing. Retrieved from http://arxiv.org/pdf/1402.4467v1.pdf.Google ScholarGoogle Scholar
  38. M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, and E. Solano. 2014. From transistors to trapped-ion computers for quantum chemistry. Sci. Rep. 4, 3589 (2014).Google ScholarGoogle Scholar

Index Terms

  1. High-Performance Computing with Quantum Processing Units

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 13, Issue 3
      Special Issue on Hardware and Algorithms for Learning On-a-chip and Special Issue on Alternative Computing Systems
      July 2017
      418 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/3051701
      • Editor:
      • Yuan Xie
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 March 2017
      • Accepted: 1 October 2016
      • Revised: 1 September 2016
      • Received: 1 November 2015
      Published in jetc Volume 13, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader