skip to main content
10.1145/2984511.2984556acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Changing the Appearance of Physical Interfaces Through Controlled Transparency

Published:16 October 2016Publication History

ABSTRACT

We present physical interfaces that change their appearance through controlled transparency. These transparency-controlled physical interfaces are well suited for applications where communication through optical appearance is sufficient, such as ambient display scenarios. They transition between perceived shapes within milliseconds, require no mechanically moving parts and consume little energy. We build 3D physical interfaces with individually controllable parts by laser cutting and folding a single sheet of transparency-controlled material. Electrical connections are engraved in the surface, eliminating the need for wiring individual parts. We consider our work as complementary to current shape-changing interfaces. While our proposed interfaces do not exhibit dynamic tangible qualities, they have unique benefits such as the ability to create apparent holes or nesting of objects. We explore the benefits of transparency-controlled physical interfaces by characterizing their design space and showcase four physical prototypes: two activity indicators, a playful avatar, and a lamp shade with dynamic appearance.

Skip Supplemental Material Section

Supplemental Material

uist3354-file3.mp4

mp4

88.1 MB

p425-lindlbauer.mp4

mp4

231.7 MB

References

  1. Alexa, M., and Matusik, W. Reliefs as images. ACM Trans. Graphics 29, 4 (2010), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bimber, O., and Raskar, R. Spatial Augmented Reality: Merging Real and Virtual Worlds. A K Peters, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Coelho, M., and Maes, P. Shutters: a permeable surface for environmental control and communication. In Proc. TEI '09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dalsgaard, P., and Halskov, K. 3D Projection on Physical Objects: Design Insights from Five Real Life Cases. In Proc. CHI '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Danninger, M., Vertegaal, R., Siewiorek, D. P., and Mamuji, A. Using social geometry to manage interruptions and co-worker attention in office environments. In Proc. GI '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Demaine, E. D., and O'Rourke, J. A survey of folding and unfolding in computational geometry. Combinatorial and computational geometry 52 (2005), 167--211.Google ScholarGoogle Scholar
  7. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. Fabricating spatially-varying subsurface scattering. ACM Trans. Graphics 29, 4 (2010), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and Ishii, H. inFORM: Dynamic Physical Affordances and Constraints through Shape and Object Actuation. In Proc. UIST '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gomes, A., Nesbitt, A., and Vertegaal, R. Morephone: A study of actuated shape deformations for flexible thin-film smartphone notifications. In Proc. CHI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Grossberg, M., Peri, H., Nayar, S., and Belhumeur, P. Making one object look like another: controlling appearance using a projector-camera system. In Proc. CVPR '04. Google ScholarGoogle ScholarCross RefCross Ref
  11. Hilliges, O., Kim, D., Izadi, S., Weiss, M., and Wilson, A. D. HoloDesk: direct 3d interactions with a situated see-through display. In Proc. CHI'12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Horev, O. "Talking to the Hand" An exploration into shape shifting objects and morphing interfaces, 2006. Master's thesis.Google ScholarGoogle Scholar
  13. Hullin, M. B., Ihrke, I., Heidrich, W., Weyrich, T., Damberg, G., and Fuchs, M. Computational Fabrication and Display of Material Appearance. In EUROGRAPHICS '13 State-of-the-Art Report.Google ScholarGoogle Scholar
  14. Inami, M., Kawakami, N., and Tachi, S. Optical camouflage using retro-reflective projection technology. In Proc. ISMAR '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ishii, H., and Kobayashi, M. ClearBoard: a Seamless Medium for Shared Drawing and Conversation with Eye Contact. In Proc. CHI'92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. J. Radical Atoms: Beyond Tangible Bits, Toward Transformable Materials. interactions 19, 1 (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Iwai, D., and Sato, K. Limpid desk: See-through access to disorderly desktop in projection-based mixed reality. In Proc. VRST '06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Izadi, S., Hodges, S., Taylor, S., Rosenfeld, D., Villar, N., Butler, A., and Westhues, J. Going beyond the display: a surface technology with an electronically switchable diffuser. In Proc. UIST'08. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jones, B. R., Sodhi, R., Murdock, M., Mehra, R., Benko, H., Wilson, A. D., Ofek, E., Macintyre, B., Raghuvanshi, N., and Shapira, L. RoomAlive: Magical Experiences Enabled by Scalable, Adaptive Projector-Camera Units. In Proc. UIST '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kakehi, Y. Transmart Miniscape {Installation}, 2012. Retrieved March 20, 2016 from http://www.xlab.sfc. keio.ac.jp/?works=transmart-miniascape.Google ScholarGoogle Scholar
  21. Lee, J., and Boulanger, C. Direct, spatial, and dexterous interaction with see-through 3D desktop. SIGGRAPH '12 Poster, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Leithinger, D., Follmer, S., Olwal, A., Luescher, S., Hogge, A., Lee, J., and Ishii, H. Sublimate: Statechanging virtual and physical rendering to augment interaction with shape displays. In Proc. CHI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Leithinger, D., and Ishii, H. Accessed Relief: A Scalable Actuated Shape Display. In Proc. TEI '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Leithinger, D., Lakatos, D., Devincenzi, A., Blackshaw, M., and Ishii, H. Direct and Gestural Interaction with Relief: A 2.5D Shape Display. In Proc. UIST '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Li, J., Greenberg, S., Sharlin, E., and Jorge, J. Interactive Two-Sided Transparent Displays: Designing for Collaboration. In Proc. DIS'14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lindlbauer, D., Aoki, T., Walter, R., UEMA, Y., Höchtl, A., Haller, M., Inami, M., and Müller, J. Tracs: Transparency-control for see-through displays. In Proc. UIST'14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lindlbauer, D., Grønbæk, J. E., Birk, M., Halskov, K., Alexa, M., and Müller, J. Combining Shape-Changing Interfaces and Spatial Augmented Reality Enables Extended Object Appearance. In Proc. CHI'16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., and Rusinkiewicz, S. Printing Spatially-Varying Reflectance. ACM Trans. Graphics 28, 5 (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Miruchna, V., Walter, R., Lindlbauer, D., Lehmann, M., von Klitzing, R., and Müller, J. Geltouch: Localized tactile feedback through thin, programmable gel. In Proc. UIST'15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nakagaki, K., Follmer, S., and Ishii, H. Lineform: Actuated curve interfaces for display, interaction, and constraint. In Proc. UIST '15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Olberding, S., Soto Ortega, S., Hildebrandt, K., and Steimle, J. Foldio: Digital fabrication of interactive and shape-changing objects with foldable printed electronics. In Proc. UIST '15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Olberding, S., Wessely, M., and Steimle, J. Printscreen: Fabricating highly customizable thin-film touch-displays. In Proc. UIST '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Olwal, A., DiVerdi, S., Candussi, N., Rakkolainen, I., and Höllerer, T. An Immaterial, Dual-sided Display System with 3D Interaction. In Proc. VR'06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Olwal, A., DiVerdi, S., Rakkolainen, I., and Höllerer, T. Consigalo: Multi-user Face-to-face Interaction on Immaterial Displays. In Proc. INTETAIN '08. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. Lumen: interactive visual and shape display for calm computing. In SIGGRAPH '04 Emerging Technologies. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Raskar, R., Welch, G., Low, K.-L., and Bandyopadhyay, D. Shader Lamps Animating Real Objects with Image-Based Illumination. In Proc. EUROGRAPHICS '01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Rasmussen, M. K., Merrit, T., Bruns Alonso, M., and Petersen, M. G. Balancing user and system control in shape-changing interfaces: a designerly exploration. In Proc. TEI '16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., and Hornbæk, K. Shape-Changing Interfaces: A Review of the Design Space and Open Research Questions. In Proc. CHI '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Rekimoto, J. Squama: modular visibility control of walls and windows for programmable physical architectures. In Proc. AVI'12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Roudaut, A., Karnik, A., Löchtefeld, M., and Subramanian, S. Morphees: Toward high "shape resolution" in self-actuated flexible mobile devices. In Proc. CHI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Schüller, C., Panozzo, D., and Sorkine-Hornung, O. Appearance-Mimicking Surfaces. ACM Trans. Graphics 33, 6 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Schwartz, M. Smart Materials. CRC Press, 2008. Google ScholarGoogle ScholarCross RefCross Ref
  43. Sharma, A., Liu, L., and Maes, P. Glassified: An augmented ruler based on a transparent display for real-time interactions with paper. In Proc. UIST '13 Adjunct. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tachi, T. Origamizing polyhedral surfaces. IEEE TVCG 16, 2 (2010), 298--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tang, C., Bo, P., Wallner, J., and Pottmann, H. Interactive design of developable surfaces. ACM Trans. Graph. 35, 2 (Jan. 2016), 12:1--12:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., and Ishii, H. PneUI: Pneumatically Actuated Soft Composite Material s for Shape Changing Interfaces. In Proc. UIST '13. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Changing the Appearance of Physical Interfaces Through Controlled Transparency

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
      October 2016
      908 pages
      ISBN:9781450341899
      DOI:10.1145/2984511

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader