skip to main content
10.1145/2929908.2929913acmotherconferencesArticle/Chapter ViewAbstractPublication PagespascConference Proceedingsconference-collections
research-article

Extreme-Scale Multigrid Components within PETSc

Authors Info & Claims
Published:08 June 2016Publication History

ABSTRACT

Elliptic partial differential equations (PDEs) frequently arise in continuum descriptions of physical processes relevant to science and engineering. Multilevel preconditioners represent a family of scalable techniques for solving discrete PDEs of this type and thus are the method of choice for high-resolution simulations. The scalability and time-to-solution of massively parallel multilevel preconditioners can be adversely affected by using a coarse-level solver with sub-optimal algorithmic complexity. To maintain scalability, agglomeration techniques applied to the coarse level have been shown to be necessary.

In this work, we present a new software component introduced within the Portable Extensible Toolkit for Scientific computation (PETSc) which permits agglomeration. We provide an overview of the design and implementation of this functionality, together with several use cases highlighting the benefits of agglomeration. Lastly, we demonstrate via numerical experiments employing geometric multigrid with structured meshes, the flexibility and performance gains possible using our MPI-rank agglomeration implementation.

References

  1. M. F. Adams, H. H. Bayraktar, T. M. Keaveny, and P. Papadopoulos. Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. In Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, SC '04, pages 34--, Washington, DC, USA, 2004. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.6, Argonne National Laboratory, 2015.Google ScholarGoogle Scholar
  3. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.Google ScholarGoogle Scholar
  4. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163--202. Birkhäuser Press, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Blatt, O. Ippisch, and P. Bastian. A massively parallel algebraic multigrid preconditioner based on aggregation for elliptic problems with heterogeneous coefficients. arXiv preprint arXiv:1209.0960v2, 2012.Google ScholarGoogle Scholar
  6. J. Brown, B. Smith, and A. Ahmadia. Achieving textbook multigrid efficiency for hydrostatic ice sheet flow. SIAM Journal on Scientific Computing, 35(2):B359--B375, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Emans. Coarse-grid treatment in parallel AMG for coupled systems in CFD applications. Journal of Computational Science, 2(4):365--376, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  8. B. Gmeiner, H. Köstler, M. Stürmer, and U. Rüde. Parallel multigrid on hierarchical hybrid grids: a performance study on current high performance computing clusters. Concurrency and Computation: Practice and Experience, 26(1):217--240, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  9. B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth. Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems. SIAM Journal on Scientific Computing, 37(2):C143--C168, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  10. B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth. Towards textbook efficiency for parallel multigrid. Numerical Mathematics: Theory, Methods and Applications, 8(01):22--46, 2015.Google ScholarGoogle Scholar
  11. T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, and R. Thakur. MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared memory. Computing, 95(12):1121--1136, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Isaac, G. Stadler, and O. Ghattas. Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics. SIAM Journal on Scientific Computing, 37(6):B804--B833, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. M. Lechmann, D. A. May, B. J. P. Kaus, and S. M. Schmalholz. Comparing thin-sheet models with 3-D multilayer models for continental collision. Geophysical Journal International, 187(1):10--33, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Li and O. B. Widlund. On the use of inexact subdomain solvers for BDDC algorithms. Computer Methods in Applied Mechanics and Engineering, 196(8):1415--1428, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  15. L. Luo, C. Yang, Y. Zhao, and X.-C. Cai. A scalable hybrid algorithm based on domain decomposition and algebraic multigrid for solving partial differential equations on a cluster of CPU/GPUs. In 2nd International Workshop on GPUs and Scientific Applications (GPUScA 2011), page 45, 2011.Google ScholarGoogle Scholar
  16. D. A. May, J. Brown, and L. Le Pourhiet. A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Computer Methods in Applied Mechanics and Engineering, 290:496--523, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  17. L. C. McInnes, B. Smith, H. Zhang, and R. T. Mills. Hierarchical Krylov and nested Krylov methods for extreme-scale computing. Parallel Computing, 40(1):17--31, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. H. Müller and R. Scheichl. Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction. Quarterly Journal of the Royal Meteorological Society, 140(685):2608--2624, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. Reiter, A. Vogel, I. Heppner, M. Rupp, and G. Wittum. A massively parallel geometric multigrid solver on hierarchically distributed grids. Computing and Visualization in Science, 16(4):151--164, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. Rokos and G. Gorman. PRAgMaTIc--parallel anisotropic adaptive mesh toolkit. In R. Keller, D. Kramer, and J.-P. Weiss, editors, Facing the Multicore-Challenge III, volume 7686 of Lecture Notes in Computer Science, pages 143--144. Springer Berlin Heidelberg, 2013.Google ScholarGoogle Scholar
  21. J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. Staar, Y. Ineichen, C. Bekas, A. Curioni, and O. Ghattas. An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in Earth's mantle. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, page 5. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Rupp, F. Rudolf, and J. Weinbub. ViennaCL - A high level linear algebra library for GPUs and multicore CPUs. In International Workshop on GPUs and Scientific Applications, pages 51--56, 2010.Google ScholarGoogle Scholar
  23. J. Shewchuk. Triangle: A two-dimensional quality mesh generator and Delaunay triangulator. http://www-2.cs.cmu.edu/~quake/triangle.html, 2005.Google ScholarGoogle Scholar
  24. J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In M. C. Lin and D. Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Science, pages 203--222. Springer-Verlag, May 1996. From the 1st ACM Workshop on Applied Computational Geometry. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. Si. TetGen: A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. http://tetgen.berlios.de, 2005.Google ScholarGoogle Scholar
  26. H. Si. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS), 41(2), February 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. Parallel geometric-algebraic multigrid on unstructured forests of octrees. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, page 43. IEEE Computer Society Press, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. Extreme-Scale Multigrid Components within PETSc

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        PASC '16: Proceedings of the Platform for Advanced Scientific Computing Conference
        June 2016
        141 pages
        ISBN:9781450341264
        DOI:10.1145/2929908

        Copyright © 2016 ACM

        © 2016 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 June 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        PASC '16 Paper Acceptance Rate12of44submissions,27%Overall Acceptance Rate109of221submissions,49%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader