skip to main content
10.1145/2908812.2908890acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article
Open Access

Convolution by Evolution: Differentiable Pattern Producing Networks

Published:20 July 2016Publication History

ABSTRACT

In this work we introduce a differentiable version of the Compositional Pattern Producing Network, called the DPPN. Unlike a standard CPPN, the topology of a DPPN is evolved but the weights are learned. A Lamarckian algorithm, that combines evolution and learning, produces DPPNs to reconstruct an image. Our main result is that DPPNs can be evolved/trained to compress the weights of a denoising autoencoder from 157684 to roughly 200 parameters, while achieving a reconstruction accuracy comparable to a fully connected network with more than two orders of magnitude more parameters. The regularization ability of the DPPN allows it to rediscover (approximate) convolutional network architectures embedded within a fully connected architecture. Such convolutional architectures are the current state of the art for many computer vision applications, so it is satisfying that DPPNs are capable of discovering this structure rather than having to build it in by design. DPPNs exhibit better generalization when tested on the Omniglot dataset after being trained on MNIST, than directly encoded fully connected autoencoders. DPPNs are therefore a new framework for integrating learning and evolution.

References

  1. J. Bayer, D. Wierstra, J. Togelius, and J. Schmidhuber. Evolving memory cell structures for sequence learning. In Artificial Neural Networks--ICANN 2009, pages 755--764. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062, 2014.Google ScholarGoogle Scholar
  3. M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting parameters in deep learning. In Advances in Neural Information Processing Systems, pages 2148--2156, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121--2159, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. J. Felleman and D. C. Van Essen. Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex, 1(1):1--47, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193--202, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.Google ScholarGoogle Scholar
  8. I. Harvey. The microbial genetic algorithm. In Advances in artificial life. Darwin Meets von Neumann, pages 126--133. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.Google ScholarGoogle Scholar
  10. D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1):106, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.Google ScholarGoogle Scholar
  12. Ł. Kaiser and I. Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228, 2015.Google ScholarGoogle Scholar
  13. D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.Google ScholarGoogle Scholar
  14. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097--1105, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, 350(6266):1332--1338, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  16. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541--551, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278--2324, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  18. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529--533, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  19. G. Morse, S. Risi, C. R. Snyder, and K. O. Stanley. Single-unit pattern generators for quadruped locomotion. In Proceedings of the 15th annual conference on Genetic and evolutionary computation, pages 719--726. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. K. Pugh and K. O. Stanley. Evolving multimodal controllers with hyperneat. In Proceedings of the 15th annual conference on Genetic and evolutionary computation, pages 735--742. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Cognitive modeling, 5:3, 1988.Google ScholarGoogle Scholar
  23. M. Santos, E. Szathmáry, and J. F. Fontanari. Phenotypic plasticity, the baldwin effect, and the speeding up of evolution: The computational roots of an illusion. Journal of theoretical biology, 371:127--136, 2015.Google ScholarGoogle Scholar
  24. J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, J. T. Folsom-Kovarik, and K. O. Stanley. Picbreeder: A case study in collaborative evolutionary exploration of design space. Evolutionary Computation, 19(3):373--403, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. O. Stanley. Compositional pattern producing networks: A novel abstraction of development. Genetic programming and evolvable machines, 8(2):131--162, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. K. O. Stanley, D. B. D'Ambrosio, and J. Gauci. A hypercube-based encoding for evolving large-scale neural networks. Artificial life, 15(2):185--212, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary computation, 10(2):99--127, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. P. Verbancsics and J. Harguess. Generative neuroevolution for deep learning. arXiv preprint arXiv:1312.5355, 2013.Google ScholarGoogle Scholar
  29. P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning, pages 1096--1103. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song, and Z. Wang. Deep fried convnets. In International Conference on Computer Vision (ICCV), 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster. Evolutionary Computation, IEEE Transactions on, 3(2):82--102, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. W. Zaremba. An empirical exploration of recurrent network architectures.Google ScholarGoogle Scholar

Index Terms

  1. Convolution by Evolution: Differentiable Pattern Producing Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '16: Proceedings of the Genetic and Evolutionary Computation Conference 2016
        July 2016
        1196 pages
        ISBN:9781450342063
        DOI:10.1145/2908812

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 July 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        GECCO '16 Paper Acceptance Rate137of381submissions,36%Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader