skip to main content
research-article

Adaptive polynomial rendering

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

In this paper, we propose a new adaptive rendering method to improve the performance of Monte Carlo ray tracing, by reducing noise contained in rendered images while preserving high-frequency edges. Our method locally approximates an image with polynomial functions and the optimal order of each polynomial function is estimated so that our reconstruction error can be minimized. To robustly estimate the optimal order, we propose a multi-stage error estimation process that iteratively estimates our reconstruction error. In addition, we present an energy-preserving outlier removal technique to remove spike noise without causing noticeable energy loss in our reconstruction result. Also, we adaptively allocate additional ray samples to high error regions guided by our error estimation. We demonstrate that our approach outperforms state-of-the-art methods by controlling the tradeoff between reconstruction bias and variance through locally defining our polynomial order, even without need for filtering bandwidth optimization, the common approach of other recent methods.

Skip Supplemental Material Section

Supplemental Material

References

  1. Delbracio, M., Musé, P., Buades, A., Chauvier, J., Phelps, N., and Morel, J.-M. 2014. Boosting Monte Carlo rendering by ray histogram fusion. ACM Trans. Graph. 33, 1, 8:1--8:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3, 1115--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3, 93:1--93:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Egan, K., Durand, F., and Ramamoorthi, R. 2011. Practical filtering for efficient ray-traced directional occlusion. ACM Trans. Graph. 30, 6, 180:1--180:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 30, 2, 9:1--9:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hayter, A. 2007. Probability and statistics for engineers and scientists 3rd. Brooks/Cole Publishing Co.Google ScholarGoogle Scholar
  8. Kajiya, J. T. 1986. The rendering equation. In ACM SIGGRAPH '86, 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kalantari, N. K., and Sen, P. 2013. Removing the noise in Monte Carlo rendering with general image denoising algorithms. Computer Graphics Forum 32, 2pt1, 93--102.Google ScholarGoogle Scholar
  10. Kalantari, N. K., Bako, S., and Sen, P. 2015. A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. 34, 4, 122:1--122:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30, 4, 55:1--55:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lehtinen, J., Aila, T., Laine, S., and Durand, F. 2012. Reconstructing the indirect light field for global illumination. ACM Trans. Graph. 31, 4, 51:1--51:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Li, T.-M., Wu, Y.-T., and Chuang, Y.-Y. 2012. SURE-based optimization for adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6, 194:1--194:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. McCool, M. D. 1999. Anisotropic diffusion for Monte Carlo noise reduction. ACM Trans. Graph. 18, 2, 171--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mehta, S. U., Wang, B., and Ramamoorthi, R. 2012. Axis-aligned filtering for interactive sampled soft shadows. ACM Trans. Graph. 31, 6, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mehta, S. U., Wang, B., Ramamoorthi, R., and Durand, F. 2013. Axis-aligned filtering for interactive physically-based diffuse indirect lighting. ACM Trans. Graph. 32, 4, 96:1--96:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mehta, S. U., Yao, J., Ramamoorthi, R., and Durand, F. 2014. Factored axis-aligned filtering for rendering multiple distribution effects. ACM Trans. Graph. 33, 4, 57:1--57:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Moon, B., Jun, J. Y., Lee, J., Kim, K., Hachisuka, T., and Yoon, S.-E. 2013. Robust image denoising using a virtual flash image for Monte Carlo ray tracing. Computer Graphics Forum 32, 1, 139--151.Google ScholarGoogle ScholarCross RefCross Ref
  19. Moon, B., Carr, N., and Yoon, S.-E. 2014. Adaptive rendering based on weighted local regression. ACM Trans. Graph. 33, 5, 170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Moon, B., Iglesias-Guitian, J. A., Yoon, S.-E., and Mitchell, K. 2015. Adaptive rendering with linear predictions. ACM Trans. Graph. 34, 4, 121:1--121:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Overbeck, R. S., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 140:1--140:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation 2nd. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1--159:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rousselle, F., Knaus, C., and Zwicker, M. 2012. Adaptive rendering with non-local means filtering. ACM Trans. Graph. 31, 6, 195:1--195:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rousselle, F., Manzi, M., and Zwicker, M. 2013. Robust denoising using feature and color information. Computer Graphics Forum 32, 7, 121--130.Google ScholarGoogle ScholarCross RefCross Ref
  26. Ruppert, D., and Wand, M. 1994. Multivariate locally weighted least squares regression. The annals of statistics 22, 3, 1346--1370.Google ScholarGoogle Scholar
  27. Rushmeier, H. E., and Ward, G. J. 1994. Energy preserving non-linear filters. In ACM SIGGRAPH, 131--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sen, P., and Darabi, S. 2012. On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph. 31, 3, 18:1--18:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2, 18:1--18:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yan, L.-Q., Mehta, S. U., Ramamoorthi, R., and Durand, F. 2015. Fast 4d sheared filtering for interactive rendering of distribution effects. ACM Trans. Graph. 35, 1, 7:1--7:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoorthi, R., Rousselle, F., Sen, P., Soler, C., and Yoon, S.-E. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum 34, 2, 667--681. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Adaptive polynomial rendering

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2016
      Published in tog Volume 35, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader