skip to main content
research-article

Non-linear shape optimization using local subspace projections

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

In this paper we present a novel method for non-linear shape optimization of 3d objects given by their surface representation. Our method takes advantage of the fact that various shape properties of interest give rise to underdetermined design spaces implying the existence of many good solutions. Our algorithm exploits this by performing iterative projections of the problem to local subspaces where it can be solved much more efficiently using standard numerical routines. We demonstrate how this approach can be utilized for various shape optimization tasks using different shape parameterizations. In particular, we show how to efficiently optimize natural frequencies, mass properties, as well as the structural yield strength of a solid body. Our method is flexible, easy to implement, and very fast.

Skip Supplemental Material Section

Supplemental Material

a87.mp4

mp4

230.7 MB

References

  1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Transactions on Graphics 31, 4 (jul), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-It: Optimizing Moment of Inertia for Spinnable Objects. ACM Transactions on Graphics 33, 4 (jul), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bathe, K.-J. 2006. Finite Element Procedures. Prentice Hall.Google ScholarGoogle Scholar
  4. Bharaj, G., Levin, D. I. W., Tompkin, J., Fei, Y., Pfister, H., Matusik, W., and Zheng, C. 2015. Computational design of metallophone contact sounds. ACM Transactions on Graphics 34, 6 (oct), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Transactions on Graphics 29, 4 (jul), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Botsch, M., and Kobbelt, L. 2005. Real-Time Shape Editing using Radial Basis Functions. Comput. Graph. Forum 24, 3, 611--621.Google ScholarGoogle ScholarCross RefCross Ref
  7. Delfour, M. C., and Zolésio, J. P. 2011. Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Second Edition. Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Eberly, D. H. 2010. Game physics, 2. edition ed. Morgan Kaufmann, Burlington, Mass.Google ScholarGoogle Scholar
  9. Finsterle, S., and Kowalsky, M. B. 2011. A truncated Levenberg--Marquardt algorithm for the calibration of highly parameterized nonlinear models. Computers & Geosciences 37, 6 (jun), 731--738. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hafner, C., Musialski, P., Auzinger, T., Wimmer, M., and Kobbelt, L. 2015. Optimization of natural frequencies for fabrication-aware shape modeling. In ACM SIGGRAPH 2015 Posters on - SIGGRAPH '15, ACM Press, New York, New York, USA, 1--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ipsen, I. C. F., Kelley, C. T., and Pope, S. R. 2011. Rank-Deficient Nonlinear Least Squares Problems and Subset Selection. SIAM Journal on Numerical Analysis 49, 3 (jan), 1244--1266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kuipers, L., and Niederreiter, H. 2012. Uniform Distribution of Sequences. Dover Books on Mathematics. Dover Publications.Google ScholarGoogle Scholar
  13. Lu, L., Chen, B., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., and Cohen-Or, D. 2014. Build-to-Last: Strength to Weight 3D Printed Objects. ACM Transactions on Graphics 33, 4 (jul), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Mises, R. V. 1986. The mechanics of solids in the plastically-deformable state.Google ScholarGoogle Scholar
  15. Musialski, P., Auzinger, T., Birsak, M., Wimmer, M., and Kobbelt, L. 2015. Reduced-Order Shape Optimization Using Offset Surfaces. ACM Transactions on Graphics (Proc. ACM SIGGRAPH 2015) 34, 4 (jul), 102:1--102:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Nocedal, J., and Wright, S. 2006. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer New York.Google ScholarGoogle Scholar
  17. Panetta, J., Zhou, Q., Malomo, L., Pietroni, N., Cignoni, P., and Zorin, D. 2015. Elastic textures for additive fabrication. ACM Transactions on Graphics 34, 4 (jul), 135:1--135:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pérez, J., Thomaszewski, B., Coros, S., Bickel, B., Canabal, J. A., Sumner, R., and Otaduy, M. A. 2015. Design and fabrication of flexible rod meshes. ACM Transactions on Graphics 34, 4 (jul), 138:1--138:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Transactions on Graphics 32, 4 (jul), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., and Gross, M. 2015. Microstructures to control elasticity in 3D printing. ACM Transactions on Graphics 34, 4 (jul), 136:1--136:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Transactions on Graphics 32, 4 (jul), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., and Gross, M. 2014. Designing inflatable structures. ACM Transactions on Graphics 33, 4 (jul), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3D printable objects. ACM Transactions on Graphics 31, 4 (jul), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. 2012. Mean Curvature Skeletons. Computer Graphics Forum 31, 5 (aug), 1735--1744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Umetani, N., Mitani, J., and Igarashi, T. 2010. Designing Custom-made Metallophone with Concurrent Eigenanalysis. In Proceedings of the Conference on New Interfaces for Musical Expression (NIME).Google ScholarGoogle Scholar
  26. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Transactions on Graphics 30, 4 (jul), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Transactions on Graphics 31, 4 (jul), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Vallet, B., and Lévy, B. 2008. Spectral Geometry Processing with Manifold Harmonics. Computer Graphics Forum 27, 2 (apr), 251--260.Google ScholarGoogle ScholarCross RefCross Ref
  29. Wang, L., and Whiting, E. 2016. Buoyancy Optimization for Computational Fabrication. Computer Graphics Forum (Proceedings of Eurographics 2016) 35, 2.Google ScholarGoogle Scholar
  30. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Transactions on Graphics 32, 6 (nov), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Transactions on Graphics 32, 4 (jul), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Transactions on Graphics 31, 6 (nov), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Non-linear shape optimization using local subspace projections

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 35, Issue 4
          July 2016
          1396 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2897824
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 July 2016
          Published in tog Volume 35, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader