skip to main content
10.1145/2786784.2786798acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

A material point method for viscoelastic fluids, foams and sponges

Published:07 August 2015Publication History

ABSTRACT

We present a new Material Point Method (MPM) for simulating viscoelastic fluids, foams and sponges. We design our discretization from the upper convected derivative terms in the evolution of the left Cauchy-Green elastic strain tensor. We combine this with an Oldroyd-B model for plastic flow in a complex viscoelastic fluid. While the Oldroyd-B model is traditionally used for viscoelastic fluids, we show that its interpretation as a plastic flow naturally allows us to simulate a wide range of complex material behaviors. In order to do this, we provide a modification to the traditional Oldroyd-B model that guarantees volume preserving plastic flows. Our plasticity model is remarkably simple (foregoing the need for the singular value decomposition (SVD) of stresses or strains). Lastly, we show that implicit time stepping can be achieved in a manner similar to [Stomakhin et al. 2013] and that this allows for high resolution simulations at practical simulation times.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bargteil, A., Wojtan, C., Hodgins, J., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proc 2008 ACM/Eurographics Symp Comp Anim, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Batty, C., and Houston, B. 2011. A simple finite volume method for adaptive viscous liquids. In Proc 2011 ACM SIGGRAPH/Eurograp Symp Comp Anim, 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. 113:1--113:7.Google ScholarGoogle Scholar
  5. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated sph for deformable solids. In Eurographics Conf. Nat. Phen., 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bonet, J., and Wood, R. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.Google ScholarGoogle Scholar
  7. Carlson, M., Mucha, P., Horn, R. V., and Turk, G. 2002. Melting and flowing. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chang, Y., Bao, K., Liu, Y., Zhu, J., and Wu, E. 2009. A particle-based method for viscoelastic fluids animation. In ACM Symp. Virt. Real. Soft. Tech., 111--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. In ACM Transactions on Graphics (TOG), vol. 29, ACM, 38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Desbrun, M., and Gascuel, M. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Eurographics Workshop Comp. Anim. Sim., 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gast, T., Schroeder, C., Stomakhin, A., Jiang, C., and Teran, J. 2015. Optimization integrator for large time steps. IEEE Trans. Vis. Comp. Graph. (in review).Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gerszewski, D., Bhattacharya, H., and Bargteil, A. 2009. A point-based method for animating elastoplastic solids. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim, 133--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goktekin, T., Bargteil, A., and O'Brien, J. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hiemenz, P., and Rajagopalan, R. 1997. Principles of Colloid and Surface Chemistry. Marcel Dekker.Google ScholarGoogle Scholar
  15. Jiang, C., Schroeder, C., Selle, A., Teran, J., and Stomakhin, A. 2015. The affine particle-in-cell method. ACM Trans. Graph. (to appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified lagrangian approach to solid-fluid animation. In Eurographics/IEEE VGTC Conf. Point-Based Graph., 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Larson, R. G. 1999. The Structure and Rheology of Complex Fluids. Oxford University Press: New York.Google ScholarGoogle Scholar
  18. Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006. Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comp. Graph. 12, 343--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. In ACM Transactions on Graphics (TOG), vol. 30, ACM, 37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Morrison, I., and Ross, S. 2002. Colloidal Dispersions: Suspensions, Emulsions and Foams. Wiley Interscience.Google ScholarGoogle Scholar
  21. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Museth, K. 2014. A flexible image processing approach to the surfacing of particle-based fluid animation (invited talk). In Mathematical Progress in Expressive Image Synthesis I, vol. 4 of Mathematics for Industry. 81--84.Google ScholarGoogle Scholar
  23. Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2006. Particle-based non-newtonian fluid animation for melting objects. In Conf. Graph. Patt. Images, 78--85.Google ScholarGoogle Scholar
  24. Paiva, A., Petronetto, F., Lewiner, T., and Tavares, G. 2009. Particle-based viscoplastic fluid/solid simulation. Comp. Aided Des. 41, 4, 306--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Prudhomme, R., and Kahn, S. 1996. Foams: Theory, Measurements, and Applications. Marcel Dekker.Google ScholarGoogle Scholar
  26. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schramm, L. 1994. Foams: Fundamentals and Applications in the Petroleum Industry. ACS.Google ScholarGoogle ScholarCross RefCross Ref
  28. Solenthaler, B., Schläfli, J., and Pajarola, R. 2007. A unified particle model for fluid-solid interactions. Comp. Anim. Virt. Worlds 18, 1, 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4, 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., and Selle, A. 2014. Augmented mpm for phase-change and varied materials. ACM Trans. Graph. 33, 4, 138:1--138:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Teran, J., Fauci, L., and Shelley, M. 2008. Peristaltic pumping and irreversibility of a stokesian viscoelastic fluid. Phys Fl 20, 7.Google ScholarGoogle ScholarCross RefCross Ref
  32. Terzopoulos, D., and Fleischer, K. 1988. Deformable models. Vis Comp 4, 6, 306--331.Google ScholarGoogle ScholarCross RefCross Ref
  33. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Comp Graph 22, 4, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3, 47:1--47:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. 28, 3, 76:1--76:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yue, Y., Smith, B., Batty, C., Zheng, C., and Grinspun, E. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Trans. Graph..Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A material point method for viscoelastic fluids, foams and sponges

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SCA '15: Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation
        August 2015
        193 pages
        ISBN:9781450334969
        DOI:10.1145/2786784

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 August 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate183of487submissions,38%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader