skip to main content
10.1145/2675133.2675210acmconferencesArticle/Chapter ViewAbstractPublication PagescscwConference Proceedingsconference-collections
research-article

Using Groups of Items for Preference Elicitation in Recommender Systems

Published:28 February 2015Publication History

ABSTRACT

To achieve high quality initial personalization, recommender systems must provide an efficient and effective process for new users to express their preferences. We propose that this goal is best served not by the classical method where users begin by expressing preferences for individual items - this process is an inefficient way to convert a user's effort into improved personalization. Rather, we propose that new users can begin by expressing their preferences for groups of items. We test this idea by designing and evaluating an interactive process where users express preferences across groups of items that are automatically generated by clustering algorithms. We contribute a strategy for recommending items based on these preferences that is generalizable to any collaborative filtering-based system. We evaluate our process with both offline simulation methods and an online user experiment. We find that, as compared with a baseline rate-15-items interface, (a) users are able to complete the preference elicitation process in less than half the time, and (b) users are more satisfied with the resulting recommended items. Our evaluation reveals several advantages and other trade-offs involved in moving from item-based preference elicitation to group-based preference elicitation.

References

  1. S. Bostandjiev, J. O'Donovan, and T. Höllerer. TasteWeights. In RecSys, New York, New York, USA, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Chang, V. Kumar, E. Gilbert, and L. Terveen. Specialization, homophily, and gender in a social curation site: Findings from pinterest. In CSCW, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Chang and A. Pal. Routing questions for collaborative answering in community question answering. ASONAM, Niagara, Ontario, Canada, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In RecSys, Barcelona, Spain, 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based recommendation methods. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 107--144. Springer US, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Drenner, S. Sen, and L. Terveen. Crafting the initial user experience to achieve community goals. In RecSys. ACM Press, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T. Riedl. Rethinking the recommender research ecosystem: Reproducibility, openness, and lenskit. RecSys, Chicago, Illinois, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Elahi, F. Ricci, and N. Rubens. Active learning strategies for rating elicitation in collaborative filtering. ACM Transactions on Intelligent Systems and Technology, 5(1):1--33, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75--174, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  10. B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315(5814):972--976.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. Funk. Netflix update: Try this at home. http://sifter.org/ simon/journal/20061211.html, 2006.Google ScholarGoogle Scholar
  12. N. Golbandi, Y. Koren, and R. Lempel. On bootstrapping recommender systems. In CIKM, New York, New York, USA, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender systems using decision trees. WSDM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. Gretarsson, J. O'Donovan, S. Bostandjiev, C. Hall, and T. Höllerer. SmallWorlds: Visualizing Social Recommendations. Computer Graphics Forum, 29(3):833--842, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Gunawardana and G. Shani. A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res., 10:2935--2962, Dec. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. L. Herlocker, J. A. Konstan, L. G. Terveen, John, and T. Riedl. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22:5--53, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Konstan and J. Riedl. Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction, 22(1-2):101--123, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Kraut, M. Burke, and J. Riedl. Dealing with newcomers.Google ScholarGoogle Scholar
  19. B. Loepp, T. Hussein, and J. Ziegler. Choice-based preference elicitation for collaborative filtering recommender systems. In CHI, pages 3085--3094, New York, New York, USA, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. M. McNee, S. K. Lam, J. A. Konstan, and J. Riedl. Interfaces for eliciting new user preferences in recommender systems. pages 178--187, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: How accuracy metrics have hurt recommender systems. In CHI Extended Abstracts. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. W. Michael Ekstrand, F. Maxwell Harper and J. Konstan. User perception of differences in movie recommendation algorithms. In Recsys, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, pages 849--856. MIT Press, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Rashid, I. Albert, and D. Cosley. Getting to know you: learning new user preferences in recommender systems. IUI, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Rashid, G. Karypis, and J. Riedl. Learning preferences of new users in recommender systems: an information theoretic approach. ACM SIGKDD Explorations Newsletter, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: an open architecture for collaborative filtering of netnews. In CSCW, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(0):53--65, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Rubens, D. Kaplan, and M. Sugiyama. Active learning in recommender systems. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 735--767. Springer US, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  29. G. Shani and A. Gunawardana. Evaluating recommendation systems. In Recommender Systems Handbook, pages 257--297. Springer US, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  30. M. Sun, F. Li, J. Lee, and K. Zhou. Learning multiple-question decision trees for cold-start recommendation. WSDM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Vig, S. Sen, and J. Riedl. The Tag Genome. ACM Transactions on Interactive Intelligent Systems, 2(3):1--44, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. Wilcoxon. Individual comparisons by ranking methods. In S. Kotz and N. Johnson, editors, Breakthroughs in Statistics, Springer Series in Statistics, pages 196--202. Springer New York, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  33. C. Zhong, M. Salehi, S. Shah, M. Cobzarenco, N. Sastry, and M. Cha. Social bootstrapping: how pinterest and last. fm social communities benefit by borrowing links from facebook. In WWW, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Using Groups of Items for Preference Elicitation in Recommender Systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CSCW '15: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing
      February 2015
      1956 pages
      ISBN:9781450329224
      DOI:10.1145/2675133

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 February 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CSCW '15 Paper Acceptance Rate161of575submissions,28%Overall Acceptance Rate2,235of8,521submissions,26%

      Upcoming Conference

      CSCW '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader