skip to main content
10.1145/2649387.2649411acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Integrated miRNA and mRNA analysis of time series microarray data

Published:20 September 2014Publication History

ABSTRACT

The dynamic temporal regulatory effects of microRNA are not well known. We introduce a technique for integrating miRNA and mRNA time series microarray data with known disease pathology. The integrated analysis includes identifying both mRNA and miRNA that are significantly similar to the quantitative pathology. Potential regulatory miRNA/mRNA target pairs are identified through databases of both predicted and validated pairs. Finally, potential target pairs are filtered by examining the second derivatives of the fold changes over time. Our system was used on genome-wide microarray expression data of mouse lungs (n = 160) following aspiration of multi-walled carbon nanotubes. This system shows promise of readily identifying miRNA for further study as potential biomarker use.

References

  1. D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel. The impact of micrornas on protein output. Nature, 455(7209):64--71, Sep 2008.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Banerjee, N. Xie, H. Cui, Z. Tan, S. Yang, M. Icyuz, E. Abraham, and G. Liu. Microrna let-7c regulates macrophage polarization. J Immunol, 190(12):6542--9, Jun 2013.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Cheng and L. M. Li. Inferring microrna activities by combining gene expression with microrna target prediction. PLoS One, 3(4):e1989, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Das, M. Kumar, V. Negi, B. Pattnaik, Y. S. Prakash, A. Agrawal, and B. Ghosh. Microrna-326 regulates profibrotic functions of transforming growth factor- in pulmonary fibrosis. Am J Respir Cell Mol Biol, 50(5):882--92, May 2014.Google ScholarGoogle ScholarCross RefCross Ref
  5. J. Dong, G. Jiang, Y. W. Asmann, S. Tomaszek, J. Jen, T. Kislinger, and D. A. Wigle. Microrna networks in mouse lung organogenesis. PLoS One, 5(5):e10854, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Dymacek and N. L. Guo. Systems approach to identifying relevant pathways from phenotype information in dose-dependent time series microarray data. In Proceedings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine, BIBM '11, pages 290--293, Washington, DC, USA, 2011. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bartel. Most mammalian mrnas are conserved targets of micrornas. Genome Res, 19(1):92--105, Jan 2009.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Griffiths-Jones, R. J. Grocock, S. van Dongen, A. Bateman, and A. J. Enright. mirbase: microrna sequences, targets and gene nomenclature. Nucleic Acids Res, 34(Database issue):D140--4, Jan 2006.Google ScholarGoogle Scholar
  9. N. L. Guo, Y.-W. Wan, J. Denvir, D. W. Porter, M. Pacurari, M. G. Wolfarth, V. Castranova, and Y. Qian. Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. J Toxicol Environ Health A, 75(18):1129--53, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  10. S.-D. Hsu, Y.-T. Tseng, S. Shrestha, Y.-L. Lin, A. Khaleel, C.-H. Chou, C.-F. Chu, H.-Y. Huang, C.-M. Lin, S.-Y. Ho, T.-Y. Jian, F.-M. Lin, T.-H. Chang, S.-L. Weng, K.-W. Liao, I.-E. Liao, C.-C. Liu, and H.-D. Huang. mirtarbase update 2014: an information resource for experimentally validated mirna-target interactions. Nucleic Acids Res, 42(Database issue):D78--85, Jan 2014.Google ScholarGoogle Scholar
  11. G. T. Huang, C. Athanassiou, and P. V. Benos. mirconnx: condition-specific mrna-microrna network integrator. Nucleic Acids Res, 39(Web Server issue):W416--23, Jul 2011.Google ScholarGoogle Scholar
  12. D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788--791, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  13. B. P. Lewis, C. B. Burge, and D. P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell, 120(1):15--20, Jan 2005.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. P. Lim, N. C. Lau, P. Garrett-Engele, A. Grimson, J. M. Schelter, J. Castle, D. P. Bartel, P. S. Linsley, and J. M. Johnson. Microarray analysis shows that some micrornas downregulate large numbers of target mrnas. Nature, 433(7027):769--73, Feb 2005.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. R. Mercer, A. F. Hubbs, J. F. Scabilloni, L. Wang, L. A. Battelli, S. Friend, V. Castranova, and D. W. Porter. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol, 8:21, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  16. M.-H. Mo, L. Chen, Y. Fu, W. Wang, and S. W. Fu. Cell-free circulating mirna biomarkers in cancer. J Cancer, 3:432--48, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. D. W. Porter, A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B. T. Chen, S. Tsuruoka, M. Endo, and V. Castranova. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology, 269(2-3):136--47, Mar 2010.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. H. Schulz, K. V. Pandit, C. L. Lino Cardenas, N. Ambalavanan, N. Kaminski, and Z. Bar-Joseph. Reconstructing dynamic microrna-regulated interaction networks. Proc Natl Acad Sci U S A, 110(39):15686--91, Sep 2013.Google ScholarGoogle ScholarCross RefCross Ref
  19. B. N. Snyder-Talkington, J. Dymacek, D. W. Porter, M. G. Wolfarth, R. R. Mercer, M. Pacurari, J. Denvir, V. Castranova, Y. Qian, and N. L. Guo. System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses. Toxicol Appl Pharmacol, 272(2):476--89, Oct 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43):15545--50, Oct 2005.Google ScholarGoogle ScholarCross RefCross Ref
  21. X. Wang and X. Wang. Systematic identification of microrna functions by combining target prediction and expression profiling. Nucleic Acids Res, 34(5):1646--52, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  22. Y. Wang, C. Huang, N. Reddy Chintagari, M. Bhaskaran, T. Weng, Y. Guo, X. Xiao, and L. Liu. mir-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting wnt/-catenin pathway. Nucleic Acids Res, 41(6):3833--44, Apr 2013.Google ScholarGoogle ScholarCross RefCross Ref
  23. F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, and T. Li. mirecords: an integrated resource for microrna-target interactions. Nucleic Acids Res, 37(Database issue):D105--10, Jan 2009.Google ScholarGoogle Scholar
  24. S. Yang, N. Xie, H. Cui, S. Banerjee, E. Abraham, V. J. Thannickal, and G. Liu. mir-31 is a negative regulator of fibrogenesis and pulmonary fibrosis. FASEB J, 26(9):3790--9, Sep 2012.Google ScholarGoogle Scholar
  25. S. Zhang, Q. Li, J. Liu, and X. J. Zhou. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microrna-gene regulatory modules. Bioinformatics, 27(13):i401--9, Jul 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Zhang, C.-C. Liu, W. Li, H. Shen, P. W. Laird, and X. J. Zhou. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res, 40(19):9379--91, Oct 2012.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Integrated miRNA and mRNA analysis of time series microarray data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      BCB '14: Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics
      September 2014
      851 pages
      ISBN:9781450328944
      DOI:10.1145/2649387
      • General Chairs:
      • Pierre Baldi,
      • Wei Wang

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 September 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate254of885submissions,29%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader