skip to main content
10.1145/2642918.2647374acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article
Open Access

A series of tubes: adding interactivity to 3D prints using internal pipes

Published:05 October 2014Publication History

ABSTRACT

3D printers offer extraordinary flexibility for prototyping the shape and mechanical function of objects. We investigate how 3D models can be modified to facilitate the creation of interactive objects that offer dynamic input and output. We introduce a general technique for supporting the rapid prototyping of interactivity by removing interior material from 3D models to form internal pipes. We describe this new design space of pipes for interaction design, where variables include openings, path constraints, topologies, and inserted media. We then present PipeDream, a tool for routing such pipes through the interior of 3D models, integrated within a 3D modeling program. We use two distinct routing algorithms. The first has users define pipes' terminals, and uses path routing and physics-based simulation to minimize pipe bending energy, allowing easy insertion of media post-print. The second allows users to supply a desired internal shape to which we fit a pipe route: for this we describe a graph-routing algorithm. We present several prototypes created using our tool to show its flexibility and potential.

Skip Supplemental Material Section

Supplemental Material

uistf2320-file3.mp4

mp4

21.7 MB

References

  1. Bickel, B., Baecher, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. Design and fabrication of materials with desired deformation behavior. In SIGGRAPH 2010, 63:1--63:10. http://www.cadsoftusa.com Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bosch, R., and Herman, A. Continuous line drawings via the traveling salesman problem. Oper. Res. Lett. 32, 4 (July 2004), 302--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Fleury, M. Deux probl'emes de geometrie de situation. Journal de mathematiques elementaires 2, 2 (1883), 257--261.Google ScholarGoogle Scholar
  4. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and Ishii, H. Jamming user interfaces: Programmable particle stiffness and sensing for malleable and shape-changing devices. In Proc. UIST '12, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Harrison, C., Xiao, R., and Hudson, S. Acoustic barcodes: Passive, durable and inexpensive notched identification tags. In Proc. UIST '12, 563--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hart, P., Nilsson, N., and Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4, 3 (July 1968), 100--107.Google ScholarGoogle ScholarCross RefCross Ref
  7. Hudson, S. E. Printing teddy bears: A technique for 3d printing of soft interactive objects. In Proc. CHI '14, ACM (2014), 459--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lee, C. An algorithm for path connections and its applications. IRE Transactions on Electronic Computers 10, 2 (1961), 346--365.Google ScholarGoogle Scholar
  9. Lorensen, W. E., and Cline, H. E. Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21, 4 (July 1987). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Majidi, C., Kramer, R., and Wood, R. J. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Materials and Structures 20 (2011).Google ScholarGoogle Scholar
  11. Mei-Ko, K. Graphic programming using odd or even points. Chinese Math. 1 (1962), 273--277.Google ScholarGoogle Scholar
  12. Mueller, S., Kruck, B., and Baudisch, P. Laserorigami: Laser-cutting 3d objects. In Proc. CHI '13, 2585--2592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Mueller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. Position based dynamics. J. Vis. Comun. Image Represent. 18, 2 (Apr. 2007), 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Mueller, S., Lopes, P., Kaefer, K., Kruck, B., and Baudisch, P. Constructable: Interactive construction of functional mechanical devices. In CHI '13 EA, 3107--3110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Museth, K., Breen, D. E., Whitaker, R. T., Mauch, S., and Johnson, D. Algorithms for interactive editing of level set models. Comp. Graph. Forum 24, 4 (2005), 821--841.Google ScholarGoogle ScholarCross RefCross Ref
  16. Navarrete, M., Lopes, A., Acuna, J., Estrada, R., MacDonald, E., Palmer, J., and Wicker, R. Integrated layered manufacturing of a novel wireless motion sensor system with GPS. Technical Report (2007).Google ScholarGoogle Scholar
  17. Park, Y.-L., Chen, B.-R., and Wood, R. J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sensors Journal 12, 8 (August 2012), 2711--2718.Google ScholarGoogle ScholarCross RefCross Ref
  18. Prevost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. Make it stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4 (July 2013), 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rivers, A., Moyer, I. E., and Durand, F. Position-correcting tools for 2d digital fabrication. ACM Transactions on Graphics (TOG) 31, 4 (2012), 88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Sarik, J., Butler, A., Villar, N., Scott, J., and Hodges, S. Combining 3D printing and printable electronics. In Adj. Proc. TEI 2012,Google ScholarGoogle Scholar
  21. Sato, M., Poupyrev, I., and Harrison, C. Touche: Enhancing touch interaction on humans, screens, liquids, and everyday objects. In Proc. CHI '12, 483--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Savage, V., Chang, C., and Hartmann, B. Sauron: Embedded single-camera sensing of printed physical user interfaces. In Proc. UIST '13, 447--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Savage, V., Zhang, X., and Hartmann, B. Midas: Fabricating custom capacitive touch sensors to prototype interactive objects. In Proc. UIST '12, 579--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Schmidt, R., and Singh, K. Meshmixer: An interface for rapid mesh composition. In ACM SIGGRAPH 2010 Talks, 6:1--6:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sells, E. Rapid prototyped electronic circuits. http://fennetic.net/irc/reprap_circuits.pdf, 2004.Google ScholarGoogle Scholar
  26. Slyper, R., and Hodgins, J. Prototyping robot appearance, movement, and interactions using flexible 3D printing and air pressure sensors. IEEE Xplore (2012).Google ScholarGoogle Scholar
  27. Slyper, R., Poupyrev, I., and Hodgins, J. Sensing through structure: Designing soft silicone sensors. In Proc. TEI '11, 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Stevens, T. Senator Stevens Speaks on Net Neutrality, June 2006.Google ScholarGoogle Scholar
  29. Weichel, C., Lau, M., Kim, D., Villar, N., and Gellersen, H. MixFab: A mixed-reality environment for personal fabrication. In Proc. CHI '14, ACM (2014), To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I. Printed optics: 3D printing of embedded optical elements for interactive devices. In Proc. UIST '12, 589--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Willis, K. D., Xu, C., Wu, K.-J., Levin, G., and Gross, M. D. Interactive fabrication: New interfaces for digital fabrication. In Proc. TEI '11, 69--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Willis, K. D. D., and Wilson, A. D. InfraStructs: fabricating information inside physical objects for imaging in the terahertz region. ACM Trans. Graph. 32, 4, 138:1--138:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wimmer, R. FlyEye: Grasp-sensitive surfaces using optical ?ber. In Proc. TEI '10, 245--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wong, F. J., and Takahashi, S. A graph-based approach to continuous line illustrations with variable levels of detail. Computer Graphics Forum 30, 7 (Nov. 2011), 1931--1939.Google ScholarGoogle ScholarCross RefCross Ref
  35. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., and Ishii, H. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. In Proc. UIST '13, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zoran, A., and Paradiso, J. A. FreeD: a freehand digital sculpting tool. In Proc. CHI '13, 2613--2616. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A series of tubes: adding interactivity to 3D prints using internal pipes

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '14: Proceedings of the 27th annual ACM symposium on User interface software and technology
      October 2014
      722 pages
      ISBN:9781450330695
      DOI:10.1145/2642918

      Copyright © 2014 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 October 2014

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '14 Paper Acceptance Rate74of333submissions,22%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader