skip to main content
research-article

Earth mover's distances on discrete surfaces

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We introduce a novel method for computing the earth mover's distance (EMD) between probability distributions on a discrete surface. Rather than using a large linear program with a quadratic number of variables, we apply the theory of optimal transportation and pass to a dual differential formulation with linear scaling. After discretization using finite elements (FEM) and development of an accompanying optimization method, we apply our new EMD to problems in graphics and geometry processing. In particular, we uncover a class of smooth distances on a surface transitioning from a purely spectral distance to the geodesic distance between points; these distances also can be extended to the volume inside and outside the surface. A number of additional applications of our machinery to geometry problems in graphics are presented.

Skip Supplemental Material Section

Supplemental Material

References

  1. Agueh, M., and Carlier, G. 2011. Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43, 2, 904--924.Google ScholarGoogle ScholarCross RefCross Ref
  2. Arnold, V. 2003. Lectures on Partial Differential Equations. Universitext. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beckmann, M. 1952. A continuous model of transportation. Econometrica, 643--660.Google ScholarGoogle Scholar
  4. Benamou, J.-D., and Brenier, Y. 2000. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84, 3, 375--393.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using Lagrangian mass transport. TOG 30, 6 (Dec.), 158:1--158:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. 2013. Sliced and Radon Wasserstein barycenters of measures. Tech. rep., Preprint Hal-00881872.Google ScholarGoogle Scholar
  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (Jan.), 1--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Campen, M., Heistermann, M., and Kobbelt, L. 2013. Practical anisotropic geodesy. Proc. SGP 32, 5, 63--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Canny, J., and Reif, J. 1987. New lower bound techniques for robot motion planning problems. In Found. Comp. Sci., no. 28, 49--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chazal, F., Cohen-Steiner, D., and Mérigot, Q. 2010. Geometric inference for measures based on distance functions. Tech. Rep. 6930, INRIA, June.Google ScholarGoogle Scholar
  11. Chazal, F., Cohen-Steiner, D., and Mérigot, Q. 2011. Geometric inference for probability measures. Found. Comp. Math. 11, 6, 733--751. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., and Zucker, S. W. 2005. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. PNAS 102, 21, 7426--7431.Google ScholarGoogle ScholarCross RefCross Ref
  13. Connolly, C., Burns, J. B., and Weiss, R. 1990. Path planning using Laplace's equation. In Proc. Conf. on Robotics and Automation, vol. 3, 2102--2106.Google ScholarGoogle Scholar
  14. Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. TOG 32, 5 (Oct.), 152:1--152:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. de Goes, F., Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2011. An optimal transport approach to robust reconstruction and simplification of 2d shapes. CGF 30, 5, 1593--1602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. TOG 31, 6 (Nov.), 171:1--171:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Deza, M. M., and Laurent, M. 2009. Geometry of Cuts and Metrics. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Dominitz, A., and Tannenbaum, A. 2010. Texture mapping via optimal mass transport. TVCG 16, 3, 419--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Feldman, M., and McCann, R. 2002. Monge's transport problem on a Riemannian manifold. Trans. AMS 354, 4, 1667--1697.Google ScholarGoogle ScholarCross RefCross Ref
  20. Folland, G. B. 1999. Real analysis: modern techniques and their applications, vol. 361. Wiley New York.Google ScholarGoogle Scholar
  21. Fouss, F., Pirotte, A., Renders, J.-M., and Saerens, M. 2007. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. Trans. Knowledge and Data Eng. 19, 3, 355--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gu, X., Luo, F., Sun, J., and Yau, S.-T., 2013. Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge-Ampère equations.Google ScholarGoogle Scholar
  23. He, B., Yang, H., and Wang, S. 2000. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory and App. 106, 2, 337--356.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jiang, X., Lim, L.-H., Yao, Y., and Ye, Y. 2011. Statistical ranking and combinatorial Hodge theory. Mathematical Programming 127, 1, 203--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. TOG 24, 3 (July), 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kimmel, R., and Sethian, J. A. 1998. Computing geodesic paths on manifolds. In PNAS, 8431--8435.Google ScholarGoogle Scholar
  27. Lai, R., Liang, J., and Zhao, H.-K. 2013. A local mesh method for solving PDEs on point clouds. Inverse Prob. and Imaging 7, 3, 737--755.Google ScholarGoogle ScholarCross RefCross Ref
  28. Li, Y. 1998. A Newton acceleration of the Weiszfeld algorithm for minimizing the sum of Euclidean distances. Comp. Optim. and App. 10, 3, 219--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lia, G., Guoa, L., Niea, J., and Liu, T. 2010. An automated pipeline for cortical sulcal fundi extraction. Medical Image Analysis 14, 3, 343--359.Google ScholarGoogle ScholarCross RefCross Ref
  30. Liang, J., and Zhao, H. 2013. Solving partial differential equations on point clouds. J. Sci. Comp. 35, 3, A1461--A1486.Google ScholarGoogle Scholar
  31. Lipman, Y., and Daubechies, I. 2011. Conformal Wasserstein distances: Comparing surfaces in polynomial time. Advances in Mathematics 227, 3, 1047--1077.Google ScholarGoogle ScholarCross RefCross Ref
  32. Lipman, Y., Rustamov, R., and Funkhouser, T. 2010. Biharmonic distance. TOG 29, 3 (June). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lipman, Y., Puente, J., and Daubechies, I. 2013. Conformal Wasserstein distance: II. Computational aspects and extensions. Math. Comp. 82, 331--381.Google ScholarGoogle ScholarCross RefCross Ref
  34. Mémoli, F. 2011. Gromov--Wasserstein distances and the metric approach to object matching. Found. Comp. Math. 11, 4, 417--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mérigot, Q. 2011. A multiscale approach to optimal transport. CGF 30, 5, 1583--1592.Google ScholarGoogle ScholarCross RefCross Ref
  36. Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C. H. 1987. The discrete geodesic problem. SIAM J. Comput. 16, 4 (Aug.), 647--668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-optimized triangulations. TOG 30, 4 (July), 103:1--103:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pan, S., and Jiang, Y. 2008. Smoothing Newton method for minimizing the sum of p-norms. J. Optim. Theory and App. 137, 2, 255--275.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Panozzo, D., Baran, I., Diamanti, O., and Sorkine-Hornung, O. 2013. Weighted averages on surfaces. TOG 32, 4 (July), 60:1--60:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Pele, O., and Werman, M. 2009. Fast and robust earth mover's distances. In Proc. ICCV, 460--467.Google ScholarGoogle Scholar
  41. Plastria, F. 2011. The Weiszfeld algorithm: Proof, amendments, and extensions. In Found. of Location Anal., H. A. Eiselt and V. Marianov, Eds., vol. 155 of Operations Research & Management Science. 357--389.Google ScholarGoogle Scholar
  42. Polthier, K., and Preuss, E. 2003. Identifying vector field singularities using a discrete Hodge decomposition. In Vis. and Math. III, H.-C. Hege and K. Polthier, Eds. Springer, 113--134.Google ScholarGoogle Scholar
  43. Qi, L., Sun, D., and Zhou, G. 2002. A primal--dual algorithm for minimizing a sum of Euclidean norms. J. Comp. Applied Math. 138, 1, 127--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Rubner, Y., Tomasi, C., and Guibas, L. J. 2000. The earth mover's distance as a metric for image retrieval. IJCV 40, 2 (Nov.), 99--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Rustamov, R. M., Lipman, Y., and Funkhouser, T. 2009. Interior distance using barycentric coordinates. In Proc. SGP, 1279--1288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Santambrogio, F. 2009. Absolute continuity and summability of transport densities: simpler proofs and new estimates. Calc. Var. PDE 36, 3, 343--354.Google ScholarGoogle ScholarCross RefCross Ref
  47. Santambrogio, F. 2013. Prescribed-divergence problems in optimal transportation. MSRI lecture notes, October 2013.Google ScholarGoogle Scholar
  48. Sayas, F.-J., 2008. A gentle introduction to the finite element method.Google ScholarGoogle Scholar
  49. Schwarz, G. 1995. Hodge decomposition: a method for solving boundary value problems. Lecture notes in mathematics. Springer.Google ScholarGoogle Scholar
  50. Solomon, J., Nguyen, A., Butscher, A., Ben-Chen, M., and Guibas, L. 2012. Soft maps between surfaces. CGF 31, 5 (Aug.), 1617--1626. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Solomon, J., Guibas, L., and Butscher, A. 2013. Dirichlet energy for analysis of synthesis of soft maps. Proc. SGP 32, 5 (Aug.), 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Sun, J., Chen, X., and Funkhouser, T. A. 2010. Fuzzy geodesics and consistent sparse correspondences for deformable shapes. Proc. SGP 29, 5, 1535--1544.Google ScholarGoogle Scholar
  53. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. TOG 24, 3 (July), 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Takano, Y., and Yamamoto, Y. 2010. Metric-preserving reduction of earth mover's distance. Asia Pac. J. Oper. Res. 27, 39.Google ScholarGoogle ScholarCross RefCross Ref
  55. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. SGP, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Villani, C. 2003. Topics in Optimal Transportation. AMS.Google ScholarGoogle Scholar
  57. Weiszfeld, E. 1937. Sur le point pour lequel la somme des distances de n points donnés est minimum. Tôhoku Math. J. 43, 355--386.Google ScholarGoogle Scholar
  58. Zhou, G., Toh, K., and Sun, D. 2003. Globally and quadratically convergent algorithm for minimizing the sum of Euclidean norms. J. Optim. Theory and App. 119, 2, 357--377.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Earth mover's distances on discrete surfaces

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 33, Issue 4
            July 2014
            1366 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2601097
            Issue’s Table of Contents

            Copyright © 2014 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 July 2014
            Published in tog Volume 33, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader