skip to main content
research-article

Animating deformable objects using sparse spacetime constraints

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We propose a scheme for animating deformable objects based on spacetime optimization. The main feature is that it robustly and within a few seconds generates interesting motion from a sparse set of spacetime constraints. Providing only partial (as opposed to full) keyframes for positions and velocities is sufficient. The computed motion satisfies the constraints and the remaining degrees of freedom are determined by physical principles using elasticity and the spacetime constraints paradigm. Our modeling of the spacetime optimization problem combines dimensional reduction, modal coordinates, wiggly splines, and rotation strain warping. Our solver is based on a theorem that characterizes the solutions of the optimization problem and allows us to restrict the optimization to low-dimensional search spaces. This treatment of the optimization problem avoids a time discretization and the resulting method can robustly deal with sparse input and wiggly motion.

Skip Supplemental Material Section

Supplemental Material

a109-sidebyside.mp4

mp4

15.3 MB

References

  1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, 165:1--165:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 53:1--53:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbič, J., Sin, F., and Grinspun, E. 2012. Interactive editing of deformable simulations. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: Toward Directable Thin Shells. ACM Trans. Graph. 26, 3, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Choi, M. G., and Ko, H.-S. 2005. Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Trans. Vis. Comput. Graphics 11, 1, 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cohen, M. F. 1992. Interactive spacetime control for animation. Proc of ACM SIGGRAPH 26, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Trans. Graph. 31, 4, 69:1--69:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 3, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gleicher, M. 1997. Motion editing with spacetime constraints. In Proc. of Symp. on Interactive 3D Graphics, 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Heeren, B., Rumpf, M., Wardetzky, M., and Wirth, B. 2012. Time-discrete geodesics in the space of shells. Comp. Graph. Forum 31, 5, 1755--1764. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4, 71:1--71:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Huang, J., Tong, Y., Zhou, K., Bao, H., and Desbrun, M. 2011. Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics 17, 7, 983--992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kass, M., and Anderson, J. 2008. Animating oscillatory motion with overlap: wiggly splines. ACM Trans. Graph. 27, 3, 28:1--28:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM Trans. Graph. 26, 3, 64:1--64:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 5, 123:1--123:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, J., and Pollard, N. S. 2011. Fast simulation of skeleton-driven deformable body characters. ACM Trans. Graph. 30, 5, 121:1--121:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kondo, R., Kanai, T., and Anjyo, K.-i. 2005. Directable animation of elastic objects. In Symp. Comp. Anim., 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Meth. Eng. 51, 479--504.Google ScholarGoogle ScholarCross RefCross Ref
  20. Li, S., Huang, J., Desbrun, M., and Jin, X. 2013. Interactive elastic motion editing through spacetime position constraints. Computer Animation and Virtual Worlds 24, 3--4, 409--417.Google ScholarGoogle ScholarCross RefCross Ref
  21. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4, 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 3, 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proc. Symp. Comp. Anim., 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nickell, R. 1976. Nonlinear dynamics by mode superposition. Comput. Meth. Appl. Mech. Eng. 7, 1, 107--129.Google ScholarGoogle ScholarCross RefCross Ref
  25. Pentland, A., and Williams, J. 1989. Good vibrations: modal dynamics for graphics and animation. Proc. of ACM SIGGRAPH 23, 207--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Popović, J., Seitz, S. M., and Erdmann, M. 2003. Motion sketching for control of rigid-body simulations. ACM Trans. Graph. 22, 4, 1034--1054. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schulz, C., von Tycowicz, C., Seidel, H.-P., and Hildebrandt, K., 2014. Proofs of two theorems concerning sparse spacetime constraints. http://arxiv.org/abs/1405.1902.Google ScholarGoogle Scholar
  29. Si, H., and Gärtner, K. 2005. Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations. In Proceedings of the 14th International Meshing Roundtable. Springer, 147--163.Google ScholarGoogle Scholar
  30. Sifakis, E., and Barbič, J. 2012. FEM simulation of 3D deformable solids: A practitioner's guide to theory, discretization and model reduction. In SIGGRAPH Courses, 20:1--20:50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sulejmanpašić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 1, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tan, J., Turk, G., and Liu, C. K. 2012. Soft body locomotion. ACM Trans. Graph. 31, 4, 26:1--26:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. 22, 3, 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Valette, S., and Chassery, J.-M. 2004. Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. Computer Graphics Forum 23, 3, 381--389.Google ScholarGoogle ScholarCross RefCross Ref
  36. von Tycowicz, C., Schulz, C., Seidel, H.-P., and Hildebrandt, K. 2013. An efficient construction of reduced deformable objects. ACM Trans. Graph. 32, 6, 213:1--213:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wisniewski, K. 2010. Finite Rotation Shells. Springer.Google ScholarGoogle Scholar
  38. Witkin, A., and Kass, M. 1988. Spacetime constraints. Proc. of ACM SIGGRAPH 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. In Proc. Symp. Comp. Anim., 15--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Xu, D., Zhang, H., Wang, Q., and Bao, H. 2005. Poisson shape interpolation. In Symp. Solid and Phys. Model., 267--274. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Animating deformable objects using sparse spacetime constraints

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 4
          July 2014
          1366 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2601097
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2014
          Published in tog Volume 33, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader