skip to main content
research-article

Fast, Accurate Event Classification on Resource-Lean Embedded Sensors

Published:01 July 2013Publication History
Skip Abstract Section

Abstract

Due to the limited computational and energy resources available on existing wireless sensor platforms, achieving high-precision classification of high-level events in-network is a challenge. In this article, we present in-network implementations of a Bayesian classifier and a condensed kd-tree classifier for identifying events of interest on resource-lean embedded sensors. The first approach uses preprocessed sensor readings to derive a multidimensional Bayesian classifier used to classify sensor data in real time. The second introduces an innovative condensed kd-tree to represent preprocessed sensor data and uses a fast nearest-neighbor search to determine the likelihood of class membership for incoming samples. Both classifiers consume limited resources and provide high-precision classification. To evaluate each approach, two case studies are considered, in the contexts of human movement and vehicle navigation, respectively. The classification accuracy is above 85% for both classifiers across the two case studies.

References

  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E. 2002. Wireless sensor networks: A survey. Comm. Mag. 40, 8, 102--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Borazio, M. and van Laerhoven, K. 2012. Combining wearable and environmental sensing into an unobtrusive tool for long-term sleep studies. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (IHI’12). ACM Press, New York, 71--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Breiman, L., Friedman, J., Olshen, R., and Stone, C. 1984. Classification and Regression Trees. Wadsworth.Google ScholarGoogle Scholar
  4. Burchfield, T. R. and Venkatesan, S. 2007. Accelerometer-based human abnormal movement detection in wireless sensor networks. In Proceedings of the 1st ACM SIGMOBILE International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments (HealthNet’07). ACM Press, New York, 67--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cover, T. and Hart, P. 1967. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 1, 21--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Crossbow Technology Incorporated. 2008a. IRIS datasheet. www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf.Google ScholarGoogle Scholar
  7. Crossbow Technology Incorporated. 2008b. MICA2 datasheet. www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf.Google ScholarGoogle Scholar
  8. Duda, R. O., Hart, P. E., and Stork, D. G. 2001. Pattern Classification. Imperial College Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eidson, G., Esswein, S.,Gemmill, J.,Hallstrom, J.,Howard, T., Post, C., Sawyer, C., and White, K. W. D. 2010. The south carolina digital watershed: End-to-end support for real-time management of water resources. Int. J. Distrib. Sensor Netw. http://www.hindawi.com/journals/ijdsn/2010/970868/.Google ScholarGoogle Scholar
  10. Fitbit Inc. 2011. FitBit ultra. http://www.fitbit.com/.Google ScholarGoogle Scholar
  11. Forney, G. 1973. The viterbi algorithm. Proc. IEEE 61, 3, 268--278.Google ScholarGoogle ScholarCross RefCross Ref
  12. Ganti, R. K., Jayachandran, P., Abdelzaher, T. F., and Stankovic, J. A. 2006. Satire: A software architecture for smart attire. In Proceedings of the 4th International Conference on Mobile Systems, Applications and Services (MobiSys’06). ACM Press, New York, 110--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Grother, P. J., Candela, G. T., and Blue, J. L. 1997. Fast implementations of nearest neighbor classifiers. Patt. Recogn. 30, 3, 459--465.Google ScholarGoogle ScholarCross RefCross Ref
  14. Györbíró, N., Fabian, A., And Homanyi, G. 2009. An activity recognition system for mobile phones. Mob. Netw. Appl. 14, 1, 82--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. He, J., Li, H., and Tan, J. 2007. Real-time daily activity classification with wireless sensor networks using hidden markov model. In Proceedings of the 29th Annual IEEE International Conference of the Engineering in Medicine and Biology Society (EMBS’07). IEEE, 3192--3195.Google ScholarGoogle Scholar
  16. Henk, C. R. and Muller, H. 2000. Context awareness by analysing accelerometer data. In Proceedings of the 4th International Symposium on Wearable Computers. IEEE, 175--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jiang, H. and Hallstrom, J. O. 2011. Fast, accurate event classification on resource-lean embedded sensors. In Proceedings of the 8th European Conference on Wireless Sensor Networks (EWSN’11). Springer, 65--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., and Turon, M. 2006. Wireless sensor networks for structural health monitoring. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems (SenSys’06). ACM Press, New York, 427--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., and Turon, M. 2007. Health monitoring of civil infrastructures using wireless sensor networks. In Proceedings of the 6th International Conference on Information Processing in Sensor Networks (IPSN’07). ACM Press, New York, 254--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kim, Y., Jeong, S., Kim, D., and Lopez, T. S. 2009. An efficient scheme of target classification and information fusion in wireless sensor networks. Personal Ubiq. Comput. 13, 7, 499--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E., and Culler, D. 2005. TinyOS: An operating system for sensor networks. In Ambient Intelligence, W. Weber, J. M. Rabaey, and E. Aarts Eds., Springer, 115--148.Google ScholarGoogle Scholar
  22. Logan, B. 2000. Mel frequency cepstral coefficients for music modeling. In Proceedings of the International Symposium on Music Information Retrieval.Google ScholarGoogle Scholar
  23. Lorincz, K., Chen, B.-R., Challen, G. W., Chowdhury, A. R., Patel, S., Bonato, P., and Welsh, M. 2009. Mercury: A wearable sensor network platform for high-fidelity motion analysis. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys’09). ACM Press, New York, 183--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lu, H., Pan, W., Lane, N. D., Choudhury, T., and Campbell, A. T. 2009. Soundsense: Scalable sound sensing for people-centric applications on mobile phones. In Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services (MobiSys’09). ACM Press, New York, 165--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Miluzzo, E., Lane, N. D., Fodor, K., Peterson, R., Lu, H.,Musolesi, M., Eisenman, S. B., Zheng, X., and Campbell, A. T. 2008. Sensing meets mobile social networks: The design, implementation and evaluation of the cenceme application. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys’08). ACM Press, New York, 337--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mohan, P., Padmanabhan, V. N., and Ramjee, R. 2008. Nericell: Rich monitoring of road and traffic conditions using mobile smartphones. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys’08). ACM Press, New York, 323--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Moteiv Corporation. 2006a. Tmote invent user’s manual. http://ohm.nuigalway.ie/0809/pbrady/docs/tmoteinvent-user-guide.pdf (Moteiv is now Sentilla).Google ScholarGoogle Scholar
  28. Moteiv Corporation. 2006b. Tmote sky datasheet. www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf (Moteiv is now Sentilla).Google ScholarGoogle Scholar
  29. Reynolds, D. and Rose, R. 1995. Robust text-independent speaker identification using gaussian mixture speaker models. IEEE Trans. Speech Audio Process. 3, 1, 72--83.Google ScholarGoogle ScholarCross RefCross Ref
  30. Roussopoulos, N., Kelley, S., and Vincent, F. 1995. Nearest neighbor queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’95). ACM Press, New York, 71--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Seeger, C., Buchmann, A., and van Laerhoven, K. 2011. Myhealthassistant: A phone-based body sensor network that captures the wearer’s exercises throughout the day. In Proceedings of the 6th International Conference on Body Area Networks. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wang, Y., Martonosi, M., and Peh, L.-S. 2007. Predicting link quality using supervised learning in wireless sensor networks. SIGMOBILE Mobile Comput. Comm. Rev. 11, 3, 71--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Werner-Allen, G., Dawson-Haggerty, S., and Welsh, M. 2008. Lance: Optimizing high-resolution signal collection in wireless sensor networks. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys’08). ACM Press, New York, 169--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Witten, I. H. and Frank, E. 2005. Data Mining: Practical Machine Learning Tools and Techniques 2nd Ed. Series in Data Management Systems. Morgan Kaufmann, San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xu, N., Rangwala, S., Chintalapudi, K. K., Ganesan, D., Broad, A., Govindan, R., and Estrin, D. 2004. A wireless sensor network for structural monitoring. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys’04). ACM Press, New York, 13--24. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast, Accurate Event Classification on Resource-Lean Embedded Sensors

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Autonomous and Adaptive Systems
        ACM Transactions on Autonomous and Adaptive Systems  Volume 8, Issue 2
        July 2013
        123 pages
        ISSN:1556-4665
        EISSN:1556-4703
        DOI:10.1145/2491465
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2013
        • Accepted: 1 March 2013
        • Revised: 1 September 2012
        • Received: 1 October 2011
        Published in taas Volume 8, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader