skip to main content
10.1145/2488608.2488680acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Classical hardness of learning with errors

Published:01 June 2013Publication History

ABSTRACT

We show that the Learning with Errors (LWE) problem is classically at least as hard as standard worst-case lattice problems. Previously this was only known under quantum reductions.

Our techniques capture the tradeoff between the dimension and the modulus of LWE instances, leading to a much better understanding of the landscape of the problem. The proof is inspired by techniques from several recent cryptographic constructions, most notably fully homomorphic encryption schemes.

References

  1. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In EUROCRYPT, pages 553--572, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In CRYPTO, pages 98--115, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Ajtai. Generating hard instances of lattice problems. In Complexity of computations and proofs, volume 13 of Quad. Mat., pages 1--32. Dept. Math., Seconda Univ. Napoli, Caserta, 2004. Preliminary version in STOC 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In STOC, pages 284--293, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against memory attacks. In TCC, pages 474--495, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Aldous and P. Diaconis. Strong uniform times and finite random walks. Adv. in Appl. Math., 8(1):69--97, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Alperin-Sheriff and C. Peikert. Circular and KDM security for identity-based encryption. In Public Key Cryptography, pages 334--352, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In CRYPTO, pages 595--618, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(4):625--635, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes. In N. Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 129--142. Springer, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more. In Public Key Cryptography, pages 499--517, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In CRYPTO, pages 868--886, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrapping. In ITCS, pages 309--325, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In FOCS, pages 97--106, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In EUROCRYPT, pages 523--552, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169--178, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Ring switching in BGV-style homomorphic encryption. In SCN, pages 19--37, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In STOC, pages 197--206, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems. Electronic Colloquium on Computational Complexity (ECCC), 3(42), 1996.Google ScholarGoogle Scholar
  20. S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the learning with errors assumption. In ICS, pages 230--240, 2010.Google ScholarGoogle Scholar
  21. J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364--1396, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Kawachi, K. Tanaka, and K. Xagawa. Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In ASIACRYPT, pages 372--389, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Khot. Inapproximability results for computational problems on lattices. In P. Nguyen and B. Vallée, editors, The LLL Algorithm: Survey and Applications. Springer-Verlag, New York, 2010.Google ScholarGoogle Scholar
  24. A. R. Klivans and A. A. Sherstov. Cryptographic hardness for learning intersections of halfspaces. In FOCS, pages 553--562, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput., 35(1):170--188, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In CT-RSA, pages 319--339, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. Lyubashevsky. Lattice-based identification schemes secure under active attacks. In Public Key Cryptography, pages 162--179, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages 738--755, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision resistant. In ICALP (2), pages 144--155, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In CRYPTO, pages 577--594, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT, pages 1--23, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Micciancio and P. Mol. Pseudorandom knapsacks and the sample complexity of LWE search-to-decision reductions. In CRYPTO, pages 465--484, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EUROCRYPT, pages 700--718, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput., 37(1):267--302, 2007. Preliminary version in FOCS 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. Micciancio and S. P. Vadhan. Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In CRYPTO, pages 282--298, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  36. A. O'Neill, C. Peikert, and B. Waters. Bi-deniable public-key encryption. In CRYPTO, pages 525--542, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC, pages 333--342, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO, pages 80--97, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In TCC, pages 145--166, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer. In CRYPTO, pages 554--571, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages 187--196, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. O. Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899--942, 2004. Preliminary version in STOC 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. O. Regev. Quantum computation and lattice problems. SIAM J. Comput., 33(3):738--760, 2004. Preliminary version in FOCS 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):1--40, 2009. Preliminary version in STOC 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. O. Regev. The learning with errors problem. In Proc. of 25th IEEE Annual Conference on Computational Complexity (CCC), pages 191--204, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. O. Regev. On the complexity of lattice problems with polynomial approximation factors. In P. Nguyen and B. Vallée, editors, The LLL Algorithm: Survey and Applications. Springer-Verlag, New York, 2010.Google ScholarGoogle Scholar

Index Terms

  1. Classical hardness of learning with errors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '13: Proceedings of the forty-fifth annual ACM symposium on Theory of Computing
      June 2013
      998 pages
      ISBN:9781450320290
      DOI:10.1145/2488608

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 June 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      STOC '13 Paper Acceptance Rate100of360submissions,28%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader