skip to main content
10.1145/2483977.2483980acmconferencesArticle/Chapter ViewAbstractPublication PagesmmsysConference Proceedingsconference-collections
research-article

A 3D tele-immersion system based on live captured mesh geometry

Published:28 February 2013Publication History

ABSTRACT

3D Tele-immersion enables participants in remote locations to share, in real-time, an activity. It offers users natural interactivity and immersive experiences, but it challenges current networking solutions. Work in the past has mainly focused on the efficient delivery of image-based 3D videos and on the realistic rendering and reconstruction of geometry-based 3D objects. The contribution of this paper is a complete media pipeline that allows for geometry-based 3D tele-immersion. Unlike previous approaches, that stream videos or video plus depth estimate, our streaming module can transmit the live-reconstructed 3D representations (triangle meshes). Based on a set of comparative experiments, this paper details the architecture and describes a novel component that can efficiently stream geometry in real-time. This component includes both a novel fast local compression algorithm and a rateless packet protection scheme geared towards the requirements imposed by real-time transmission of live-capture mesh geometry. Tests on a large dataset show an encoding and decoding speed-up of over 10 times at similar compression and quality rates, when compared to the high-end MPEG-4 SC3DMC mesh encoder. The implemented rateless code ensures complete packet loss protection of the triangle mesh object and avoids delay introduced by retransmissions. This approach is compared to a streaming mechanism over TCP and outperforms it at packet loss rates over 2% and/or latencies over 9 ms in terms of end-to-end transmission delay. As reported in this paper, the component has been successfully integrated into a larger tele-immersive environment that includes beyond state of the art 3D reconstruction and rendering modules. This resulted in a prototype that can capture, compress transmit and render triangle mesh geometry in real-time over the internet.

References

  1. Yang Z., Yu B., Diankov R., Wu W., and Bajcsy W. Collaborative Dancing in Tele-Immersive Environment(2006). ACM International Conference on Multimedia (MM) pp. 723--726 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Forte M., Kurillo G., Cyberarchaeology - Experimenting with Teleimmersive Archaeology (2010) 16th International Conference on Virtual Systems and Multimedia (VSMM 2010), pp 155--162.Google ScholarGoogle Scholar
  3. Kurillo G., Bajcsy R., Kreylos O., Rodriguez R., Tele-immersive environment for remote medical collaboration (2009). In Proceedings of Medicine Meets Virtual Reality (MMVR17), pp. 148--150.Google ScholarGoogle Scholar
  4. Nahrstedt K., Bajcsy R., Wymore L., Kurillo G., Mezur K., Sheppard R., Yang Z., and Wu. W. (2007), Symbiosis of Tele-Immersive Environments with Creative Choreography. ACM Workshop on Supporting Creative Acts Beyond Dissemination 2007 (in conjunction with CCC'07).Google ScholarGoogle Scholar
  5. Kauff P., Schreer O. An immersive 3D video-conferencing system using shared virtual team user environments (2002). In Proceedings of the 4th international conference on Collaborative virtual environments (CVE '02). ACM, pp 105--112 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alexiadis D., Kordelas D. S., G. Apostolakis, K. C.; Agapito, J. D.; Vegas, J. M.; Izquierdo, E.; Daras, Reconstruction for 3D immersive virtual environments (2012). 3th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS) pp.1--4Google ScholarGoogle Scholar
  7. Vasudevan R., Kurillo K., Lobaton E., Bernardin T., Kreylos O., Bajcsy R., Nahrstedt, K. High Quality Visualization for Geographically Distributed 3-D Tele-immersive Applications(2011). IEEE Transactions on Multimedia, Vol. 13, NO 3, June 2011 pp. 573--584 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Wu W., Arefin A., Kurillo G., Argawal P., Nahrstedt K., Bajcsy R., Color-plus-Depth Level-of-Detail in 3D Tele-Immersive Video: A psychophysical Approach (2011). In Proceedings of the 19th ACM international conference on Multimedia (MM '11). ACM, New York, NY, USA, pp. 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Towles H., Chen W., Yang R., Kum S., Fuchs H. Kelshikar., Mulligan J., Holden L., Zeleznik B., Sadagic A., Forman J. L., 3D Tele-collaboration over internet2. (2002). International workshop on tele presence 2002, Juan Les PinsGoogle ScholarGoogle Scholar
  10. Ott, D. E. and Mayer-Patel, K., 2004. Coordinated multi-streaming for 3D tele-immersion (2004). 12th Annual ACM International Conference on Multimedia, pp. 596--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Yang Z., Wu W., Nahrstedt K., Kurillo G., and Bajcsy R.. 2010. Enabling multi-party 3D tele-immersive environments with ViewCast. ACM Trans. Multimedia Comput. Commun. Appl. 6, 2, Article 7 (March 2010), 30 pages. Google ScholarGoogle ScholarCross RefCross Ref
  12. Huang, Z., Wu, W., Nahrstedt, K., Rivas, R. and Arefin, A., SyncCast: Synchronized dissemination in multi-site interactive 3D tele-immersion (2011). 2nd Annual ACM Conference on Multimedia Systems (MMSys '11)., pp. 69--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Peng J., Kim C. S., C-C jay Kuo. Technologies for 3D Mesh Compression: A survey. Elsevier journal of visual communication and image representation(2005) pp. 688--733 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Isenburg M., Lindstrom P., 2005. Streaming meshes (2005). IEEE Visualization (VIS 05) pp 231--238Google ScholarGoogle Scholar
  15. Mamou, K., Zaharia, T. and Prêteux, F. TFAN: A low complexity 3D mesh compression algorithm (2009),. Comp. Anim. Virtual Worlds, 20: 343--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jang E.s., Lee S., Koo B., Kim D., Son K. Fast 3D Mesh Compression using Shared Vertex Analysis (2010) ETRI Journal, Volume 32, Number 1, February 2010Google ScholarGoogle Scholar
  17. AlRegib G. and Altunbasak Y., 3TP: An application-layer protocol for streaming 3-D graphics, (2005) IEEE Trans. on Multimedia, Vol. 7, No. 6, pp. 1149--1156 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Li H., Li M., and Prabhakaran B.. Middleware for streaming 3D progressive meshes over lossy networks (2006.). ACM Trans. Multimedia Comput. Commun. Appl. 2, 4 (November 2006), 282--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Wei Cheng, Wei Tsang Ooi, Sebastien Mondet, Romulus Grigoras, and Géraldine Morin. 2011. Modeling progressive mesh streaming: Does data dependency matter?.(2011) ACM Trans. Multimedia Comput. Commun. Appl. 7, 2, Article 10 (March 2011), 24 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A digital fountain approach to reliable distribution of bulk data(1998). SIGCOMM Comput. Commun. Rev. 28, 4 pp. 56--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Smolic, A., 3D Video and Free-viewpoint Video-From Capture to Display (2011). Elsevier Pattern Recognition Volume 4 Issue 9 pp. 1958--1968 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Touma C., Gotsman T., Triangle mesh compression, (1998) Proceedings of Graphics Interface, 1998,pp. 26--34.Google ScholarGoogle Scholar
  23. Gumhold S., Straßer W., Real time compression of triangle mesh connectivity(1998), in: ACM SIGGRAPH'98 pp. 133--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pajarola R., Rossignac J., Compressed progressive meshes, IEEE Trans. Vis. Comput. Graph. 6 (1) (2000) pp. 79--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Taubin G., Rossignac J., Geometric compression through topological surgery, ACM Trans. Graph.17 (2) (1998) pp.84--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Khodakovsky A., Schroeder P., Sweldens W. Progressive geometry compression(2000). In Proceedings of the 27th annual conference on Computer graphics and interactive techniques SIGGRAPH '00. pp. 271--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Aspert, N. Santa-Cruz D., Ebrahimi T., MESH: Measuring Error between Surfaces using the Hausdorff distance (2002), in Proceedings of the IEEE International Conference on Multimedia and Expo 2002 ICME pp. 705--708Google ScholarGoogle Scholar
  28. M. Luby (2002). "LT Codes". Proceedings of the IEEE Symposium on the Foundations of Computer Science: pp. 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Luby, A. Shokrollahi M. Watson, T. Stockhammer, RFC 5053 Raptor Forward Error Correction Scheme for Object Delivery (2007)Google ScholarGoogle Scholar
  30. M. Luby A. Shokrallahi, M. Watson, T. Stockhammer, L. Minder RFC 6330 RaptorQ Raptor Forward Error Correction Scheme for Object Delivery(2011)Google ScholarGoogle Scholar
  31. Li, S.-Y. R.; Yeung, R. W.; Ning Cai;, "Linear network coding,"(2003) Information Theory, IEEE Transactions on, vol.49, no.2, pp.371--381, Feb. 2003 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Chou P. A., Wu Y., and Jain K.. Practical network coding. In Allerton Conference in Communication, Control and Computing, Monticello, IL, Oct. 2003.Google ScholarGoogle Scholar

Index Terms

  1. A 3D tele-immersion system based on live captured mesh geometry

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MMSys '13: Proceedings of the 4th ACM Multimedia Systems Conference
      February 2013
      304 pages
      ISBN:9781450318945
      DOI:10.1145/2483977
      • General Chair:
      • Carsten Griwodz

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 February 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MMSys '13 Paper Acceptance Rate15of63submissions,24%Overall Acceptance Rate176of530submissions,33%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader