skip to main content
10.1145/2442829.2442848acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Power series solutions of singular (q)-differential equations

Published:22 July 2012Publication History

ABSTRACT

We provide algorithms computing power series solutions of a large class of differential or q-differential equations or systems. Their number of arithmetic operations grows linearly with the precision, up to logarithmic terms.

References

  1. W. Balser. Formal power series and linear systems of meromorphic ordinary differential equations. Universitext. Springer-Verlag, New York, 2000.Google ScholarGoogle Scholar
  2. M. Barkatou, G. Broughton, and E. Pflügel. A monomial-by-monomial method for computing regular solutions of systems of pseudo-linear equations. Math. Comput. Sci., 4(2-3):267--288, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Barkatou and E. Pflügel. An algorithm computing the regular formal solutions of a system of linear differential equations. J. Symb. Comput., 28(4-5):569--587, 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. J. Bernstein. Composing power series over a finite ring in essentially linear time. J. Symb. Comput., 26(3):339--341, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, S. Sedoglavic, and É. Schost. Fast computation of power series solutions of systems of differential equations. In Symposium on Discrete Algorithms, SODA'07, pages 1012--1021. ACM-SIAM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Bostan, L. González-Vega, H. Perdry, and É. Schost. From Newton sums to coefficients: complexity issues in characteristic p. In MEGA '05, 2005.Google ScholarGoogle Scholar
  7. A. Bostan, F. Morain, B. Salvy, and É. Schost. Fast algorithms for computing isogenies between elliptic curves. Math. of Comp., 77(263):1755--1778, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Bostan, B. Salvy, and É. Schost. Power series composition and change of basis. In ISSAC'08, pages 269--276. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. J. Complexity, 21(4):420--446, 2005. Google ScholarGoogle ScholarCross RefCross Ref
  10. A. Bostan and É. Schost. Fast algorithms for differential equations in positive characteristic. In ISSAC'09, pages 47--54. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM, 25(4):581--595, 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. P. Brent and J. F. Traub. On the complexity of composition and generalized composition of power series. SIAM J. Comput., 9:54--66, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  13. D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Inform., 28(7):693--701, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251--280, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C.-É. Drevet, M. Islam, and É. Schost. Optimization techniques for small matrix multiplication. Theoretical Computer Science, 412:2219--2236, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fischer and Stockmeyer. Fast on-line integer multiplication. J. of Computer and System Sciences, 9, 1974. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: Error-correction with optimal redundancy. IEEE Trans. on Information Theory, 54(1):135--150, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. van der Hoeven. Relax, but don't be too lazy. J. Symb. Comput., 34(6):479--542, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. van der Hoeven. Relaxed multiplication using the middle product. In ISSAC'03, pages 143--147. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. van der Hoeven. New algorithms for relaxed multiplication. J. Symb. Comput., 42(8):792--802, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. van der Hoeven. Relaxed resolution of implicit equations. Technical report, HAL, 2009. http://hal.archives-ouvertes.fr/hal-00441977.Google ScholarGoogle Scholar
  23. J. van der Hoeven. From implicit to recursive equations. Technical report, HAL, 2011. http://hal.archives-ouvertes.fr/hal-00583125.Google ScholarGoogle Scholar
  24. J. van der Hoeven. Faster relaxed multiplication. Technical report, HAL, 2012. http://hal.archives-ouvertes.fr/hal-00687479.Google ScholarGoogle Scholar
  25. K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM J. Comput., 40(6):1767--1802, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Kirrinnis. Fast algorithms for the Sylvester equation AX &minus; XB<sup>t</sup> = C. Theoretical Computer Science, 259(1-2):623--638, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Lercier and T. Sirvent. On Elkies subgroups of &ell;-torsion points in elliptic curves defined over a finite field. Journal de Théorie des Nombres de Bordeaux, 20(3):783--797, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281--292, 1971.Google ScholarGoogle ScholarCross RefCross Ref
  29. V. Shoup. NTL 5.5.2: A library for doing number theory, 2009. www.shoup.net/ntl.Google ScholarGoogle Scholar
  30. A. Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University of Edinburgh, 2010.Google ScholarGoogle Scholar
  31. V. Vassilevska Williams. Breaking the Coppersmith-Winograd barrier. Technical report, 2011.Google ScholarGoogle Scholar
  32. A. Waksman. On Winograd's algorithm for inner products. IEEE Trans. On Computers, C-19:360--361, 1970. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. W. Wasow. Asymptotic expansions for ordinary differential equations. John Wiley&Sons, 1965.Google ScholarGoogle Scholar

Index Terms

  1. Power series solutions of singular (q)-differential equations

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ISSAC '12: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation
        July 2012
        390 pages
        ISBN:9781450312691
        DOI:10.1145/2442829

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 July 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ISSAC '12 Paper Acceptance Rate46of86submissions,53%Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader