skip to main content
research-article

The magic lens: refractive steganography

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

We present an automatic approach to design and manufacture passive display devices based on optical hidden image decoding. Motivated by classical steganography techniques we construct Magic Lenses, composed of refractive lenslet arrays, to reveal hidden images when placed over potentially unstructured printed or displayed source images. We determine the refractive geometry of these surfaces by formulating and efficiently solving an inverse light transport problem, taking into account additional constraints imposed by the physical manufacturing processes. We fabricate several variants on the basic magic lens idea including using a single source image to encode several hidden images which are only revealed when the lens is placed at prescribed orientations on the source image or viewed from different angles. We also present an important special case, the universal lens, that forms an injection mapping from the lens surface to the source image grid, allowing it to be used with arbitrary source images. We use this type of lens to generate hidden animation sequences. We validate our simulation results with many real-world manufactured magic lenses, and experiment with two separate manufacturing processes.

References

  1. Alasia, A. V., 1976. Process of coding indicia and product produced thereby. U. S. Patent Number 3937565. Filed Jun 3, 1974.Google ScholarGoogle Scholar
  2. Alasia, A. V., 1998. Digital anti-counterfeiting software method and apparatus. U. S. Patent Number 5708717. Filed Nov 29, 1995.Google ScholarGoogle Scholar
  3. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Transactions on Graphics 29, 4 (July), 60:1--60:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baran, I., Keller, P., Bradley, D., Coros, S., Jarosz, W., Nowrouzezahrai, D., and Gross, M. 2012. Manufacturing layered attenuators for multiple prescribed shadow images. Computer Graphics Forum (Proceedings of Eurographics) 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. 2009. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Barnes, C., Shechtman, E., Goldman, D. B., and Finkelstein, A. 2010. The generalized PatchMatch correspondence algorithm. In European Conference on Computer Vision, Springer, K. Daniilidis, P. Maragos, and N. Paragios, Eds., vol. 6313 of Lecture Notes in Computer Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Barnes, C., Goldman, D. B., Shechtman, E., and Finkelstein, A. 2011. The PatchMatch randomized matching algorithm for image manipulation. Communications of the ACM 54, 11 (Nov.), 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Barnes, C. 2011. PatchMatch: A Fast Randomized Matching Algorithm with Application to Image and Video. PhD thesis, Princeton University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brosh, S., and Wright, T., 1994. Anti-counterfeiting process using lenticular optics and color masking. U. S. Patent Number 5303370. Filed Nov 13, 1992.Google ScholarGoogle Scholar
  10. Chu, H.-K., Hsu, W.-H., Mitra, N. J., Cohen-Or, D., Wong, T.-T., and Lee, T.-Y. 2010. Camouflage images. ACM Transactions on Graphics 29, 4 (July), 51:1--51:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Finckh, M., Dammertz, H., and Lensch, H. 2010. Geometry construction from caustic images. In Proceedings of the European Conference on Computer Vision (ECCV). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gotoda, H. 2010. A multilayer liquid crystal display for autostereoscopic 3d viewing. Stereoscopic Displays and Applications XXI 7524, 1--8.Google ScholarGoogle Scholar
  13. Hersch, R. D., and Chosson, S. 2004. Band moiré images. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 23, 3 (Aug.), 239--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hersch, R. D., Collaud, F., and Emmel, P. 2003. Reproducing color images with embedded metallic patterns. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 22, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hersch, R. D., Donzé, P., and Chosson, S. 2007. Color images visible under uv light. ACM Transactions on Graphics 26, 3 (July), 75:1--75:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lanman, D., Wetzstein, G., Hirsch, M., Raskar, R., and Heidrich, W. 2011. Polarization fields: Dynamic light field display using multi-layer LCDs. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 30, 6 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lippmann, J. F. G. 1908. Epreuves reversibles donnant la sensation du relief. Journal of Physics.Google ScholarGoogle Scholar
  18. Lowe, D. G. 1999. Object recognition from local scale-invariant features. In The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1150--1157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mitra, N. J., and Pauly, M. 2009. Shadow art. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mitra, N. J., Chu, H.-K., Lee, T.-Y., Wolf, L., Yeshurun, H., and Cohen-Or, D. 2009. Emerging images. ACM Transactions on Graphics 28, 5 (Dec.), 163:1--163:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Naor, M., and Shamir, A. 1994. Visual cryptography. In Advances in Cryptology EUROCRYPT, Springer Berlin/Heidelberg, A. De Santis, Ed., vol. 950 of Lecture Notes in Computer Science, 1--12.Google ScholarGoogle Scholar
  22. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum (Proceedings of Eurographics) 30, 2.Google ScholarGoogle ScholarCross RefCross Ref
  23. Pritchard, D., and Heidrich, W. 2003. Cloth motion capture. Computer Graphics Forum 22, 3 (Sept.), 263--271.Google ScholarGoogle ScholarCross RefCross Ref
  24. Renesse, R. L. 2004. Optical Document Security, 3 ed. Artech House, 161--164.Google ScholarGoogle Scholar
  25. Tyler, C. W., and Clarke, M. B. 1990. The autostereogram. In Proceedings of SPIE, vol. 1256 of Stereoscopic Displays and Applications, 182--196.Google ScholarGoogle Scholar
  26. Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. 2007. Microfacet models for refraction through rough surfaces. In Rendering Techniques 2007: 18th Eurographics Workshop on Rendering, 195--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Walter, B., Zhao, S., Holzschuch, N., and Bala, K. 2009. Single scattering in refractive media with triangle mesh boundaries. ACM Transactions on Graphics 28, 3 (aug). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Transactions Graphics (Proceedings of SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Transactions on Graphics 28, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yue, Y., Iwasaki, K., Chen, B.-Y., Dobashi, Y., and Nishita, T. 2012. Pixel art with refracted light by rearrangeable sticks. Computer Graphics Forum (Proceedings of Eurographics) 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The magic lens: refractive steganography

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 6
        November 2012
        794 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2366145
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 November 2012
        Published in tog Volume 31, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader