skip to main content
research-article

Fast poisson solvers for thermal analysis

Published:05 July 2012Publication History
Skip Abstract Section

Abstract

Accurate and efficient thermal analysis for a VLSI chip is crucial, both for sign-off reliability verification and for design-time circuit optimization. To determine an accurate temperature profile, it is important to simulate a die together with its thermal mounts: this requires solving Poisson's equation on a nonrectangular 3D domain. This article presents a class of eigendecomposition-based Fast Poisson Solvers (FPS) for chip-level thermal analysis. We start with a solver that solves a rectangular 3D domain with mixed boundary conditions in O(N⋅ logN) time, where N is the dimension of the finite difference matrix. Then we reveal, for the first time in the literature, a strong relation between fast Poisson solvers and Green-function-based methods. Finally, we propose an FPS method that leverages the preconditioned conjugate gradient method to solve nonrectangular 3D domains efficiently. We demonstrate this approach on thermal analysis of an industrial microprocessor, showing accurate results verified by a commercial tool, and that it solves a system of dimension 4.54e6 in only 13 conjugate gradient iterations, with a runtime of 65 seconds, a 15X speedup over the popular ICCG solver.

References

  1. Amestoy, P. R., Davis, T. A., and Duff, I. S. 1996. An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 886--905. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. ANSYS Thermal Modeling Reference. 2012. http://www1.ansys.com/customer/content/documentation/121/ans_the.pdf.Google ScholarGoogle Scholar
  3. Bagnoli, P. E., Casarosa, C., and Stefani, F. 2007. DJOSER: Analytical thermal simulator for multilayer electronic structures. Theory and numerical implementation. In Proceedings of the International Conference on Thermal Issues in Emerging Technologies, Theory and Applications. 111--118.Google ScholarGoogle Scholar
  4. Costa, J. P., Chou, M., and Silveira, L. M. 1999. Efficient techniques for accurate modeling and simulation of substrate coupling in mixed-signal IC's. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 18, 5, 597--607. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Gharpurey, R. and Meyer, R. G. 1996. Modeling and analysis of substrate coupling in integrated circuits. IEEE J. Solid State Circ. 31, 3, 344--353.Google ScholarGoogle ScholarCross RefCross Ref
  6. Heriz, V. M., Park, J., Kemper, T., Kang, S., and Shakouri, A. 2007. Method of images for the fast calculation of temperature distributions in packaged VLSI chips. In Proceedings of the 13th International Workshop on Thermal Investigation of ICs and Systems. 18--25.Google ScholarGoogle Scholar
  7. Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., and Stan, M. R. 2006. HotSpot: A compact thermal modeling methodology for early-stage VLSI design. IEEE Trans. VLSI. Syst. 14, 5, 501--513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jimenez, V., Gioiosa, R., Kursun, E., Cazorla, F. J., Cher, C., Buyuktosunoglu, A., Bose, P., and Valero, M. 2010. Trends and techniques for energy efficient architectures. In Proceedings of the IEEE/IFIP VLSI System on Chip Conference. 276--279.Google ScholarGoogle Scholar
  9. Johnson, T. A., Knepper, R. W., Marcello, V., and Wang, W. 1984. Chip substrate resistance modeling technique for integrated circuit design. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 3, 126--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Karypis, G. and Kumar, V. 1995. METIS: Unstructured graph partitioning and sparse matrix ordering system, version 2.0. http://glaros.dtc.umn.edu/gkhome/views/metis.Google ScholarGoogle Scholar
  11. Le, H. Q., Starke, W. J., Fields, J. S., O'Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer, W. M., Schwarz, E. M., and Vaden, M. T. 2007. IBM POWER6 microarchitecture. IBM J. Res. Devel. 51, 6, 639--662. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Li, P., Pileggi, L. T., Ashenghi, M., and Chandra, R. 2004. Efficient full-chip thermal modeling and analysis. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (Digest of Technical Papers). 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Mizunuma, H., Yang, C., and Lu, Y. 2009. Thermal modeling for 3D-ICs with integrated microchannel cooling. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (Digest of Technical Papers). 256--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Miknejad, A. M., Gharpurey, R., and Meyer, R. G. 1998. Numerically stable green function for modeling and analysis of substrate coupling in integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 17, 4, 305--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Saad, Y. 2003. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Sabry, M. M., Coskun, A. K., Atienza, D., Rosing, T. S., and Brunschwiler, T. 2011. Energy-Efficient multiobjective thermal control for liquid-cooled 3-D stacked architectures. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 30, 12, 1883--1896. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Shi, J., Cai, Y., Hou, W., Ma, L., Tan, S. X. D., Ho, P., and Wang, X. 2009. GPU friendly fast poisson solver for structured power grid network analysis. In Proceedings of the IEEE/ACM Design Automation Conference (DAC'09). 178--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Sridhar, A., Vincenzi, A., Ruggiero, M., Brunschwiler, T., and Atienza, D. 2010. 3D-ICE: Fast compact transient thermal modeling for 3D ICs with inter-tier liquid cooling. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (Digest of Technical Papers). 463--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Stolt, B., Mittlefehldt, Y., Dubey, S., Mittal, G., Lee, M., Friedrich, J., and Fluhr, E. 2008. Design and implementation of the POWER6 microprocessor. IEEE J. Solid State Circ. 43, 1, 21--28.Google ScholarGoogle ScholarCross RefCross Ref
  20. Swarztrauber, P. N. 1977. The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle. SIAM Rev. 19, 3, 490--501.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Wang, B. and Mazumder, P. 2007. Accelerated chip-level thermal analysis using multilayer Green's function. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26, 2, 325--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Xu, C., Gharpurey, R., Fiez, T. S., and Mayaram, K. 2005. A Green function-based parasitic extraction method for inhomogeneous substrate layers. In Proceedings of the IEEE/ACM Design Automation Conference (DAC'05). 141--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Zhan, Y. and Sapatnekar, S. S. 2007. High efficiency Green function based thermal simulation algorithms. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26, 9, 1661--1675. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast poisson solvers for thermal analysis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Design Automation of Electronic Systems
      ACM Transactions on Design Automation of Electronic Systems  Volume 17, Issue 3
      Special section on verification challenges in the concurrent world
      June 2012
      377 pages
      ISSN:1084-4309
      EISSN:1557-7309
      DOI:10.1145/2209291
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 July 2012
      • Accepted: 1 March 2012
      • Revised: 1 December 2011
      • Received: 1 July 2011
      Published in todaes Volume 17, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader