skip to main content
10.1145/2207676.2208727acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Evaluation of human tangential force input performance

Authors Info & Claims
Published:05 May 2012Publication History

ABSTRACT

While interacting with mobile devices, users may press against touch screens and also exert tangential force to the display in a sliding manner. We seek to guide UI design based on the tangential force applied by a user to the surface of a hand-held device. A prototype of an interface using tangential force input was implemented utilizing a force sensitive layer and an elastic layer and used for the user experiment. We investigated user controllability to reach and maintain target force levels and considered the effects of hand pose and direction of force input. Our results imply no significant difference in performance when applying force holding the device in one hand and in two hands. We also observed that users have more physical and perceived loads when applying tangential force in the left-right direction compared to the up-down direction. Based on the experimental results, we discuss considerations for user interface applications of tangential-force-based interface.

References

  1. Accot, J., Zhai, Z., Beyond Fitts' law: models for trajectory-based HCI tasks. In Proc. CHI '97. ACM (1997), 295--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Card, S., English, W., Burr, B., Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT. Ergonomics (1978). 21(8): 601--613.Google ScholarGoogle Scholar
  3. Casiez, G. and Vogel, D. The effect of spring stiffness and control gain with an elastic rate control pointing device. In Proc. CHI '08. ACM (2008), 1709--1718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Clarkson, E. C., Patel, S. N., Pierce, J. S., Abowd, G. D., Exploring continuous pressure input for mobile phones. GVU Technical Report. GIT-GVU-06-20, 2006.Google ScholarGoogle Scholar
  5. Heo, S., Lee, G., Force gestures: augmented touch screen gestures using normal and tangential force. Ext. Abstracts CHI ' ACM (2011), 1909--1914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Heo, S., Lee, G., Force gestures: augmented touch screen gestures using normal and tangential force. In Proc. UIST '11. ACM (2011), 621--626. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Herot, C., Weinzapfel, G., One-Point Touch Input of Vector Information from Computer Displays. In Proc. SIGGRAPH '78. ACM (1978), 210--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Luczak, W. Oleksiuk, M. Bodnicki, Sensing tilt with MEMS Accelerometers. IEEE Sensors Journal (2006), 1669--1675.Google ScholarGoogle ScholarCross RefCross Ref
  9. McCallum D. C., Mak, E., Irani, P., Subramanian, S., PressureText: pressure input for mobile phone text entry. Ext. Abstracts CHI '09. ACM (2009), 4519--4524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Minsky, M. R. Manipulating simulated objects with real-world gestures using a force and position sensitive screen. In Proc. SIGGRAPH '84. ACM (1984), 195--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Miyaki, T., Rekimoto, J., GraspZoom: zooming and scrolling control model for single-handed mobile interaction. In Proc. MobileHCI '09. ACM (2009), 81--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Mizobuchi, S., Terasaki, S., Keski-Jaskari, T., Nousiainen, J., Ryynanen, M., Silfverberg, M., Making an impression: force-controlled pen input for handheld devices. Ext. Abstracts CHI '05. ACM (2005), 1661--1664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Moore, K. L., Dalley, A. F., Agur, A. M. R., Clinically Oriented Anatomy. 6th ed., Lippincott Williams & Wilkins (2010).Google ScholarGoogle Scholar
  14. Nakazawa, N., Ikeura, R., Innoka, H., Characteristics of human fingertips in the shearing direction. Biological Cybernetics 82(3). Springer-Verlag (2000), 207--214.Google ScholarGoogle Scholar
  15. Pataky, T. C., Latash, M. L., Zatsiorsky, V. M., Viscoelastic response of the finger pad to incremental tangential displacements. Journal of Biomechanics, 38 (2005). 1441--1449.Google ScholarGoogle Scholar
  16. Quinn, P., Cockburn, A., Zoofing!: faster list selections with pressure-zoom-flick-scrolling. In Proc. OZCHI '09. ACM (2009),185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ramos, G., Boulos, M., Balakrishnan, R., Pressure widgets. In Proc. CHI '04. ACM (2004), 487--494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Rekimoto, J., Schwesig, C., PreSenseII: Bi-directional touch and pressure sensing interactions with tactile feedback. Ext. Abstracts CHI '06. ACM (2006), 1253--1258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rutledge, J. D., Selker, T., Force-to-motion functions for pointing, In Proc. of Human-Computer Interaction - INTERACT'90. Springer (1990), 701--705. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Selker, T., and Rutledge, J. Finger Force Precision for Computer Pointing. IBM RC 17342 (1991), 2--7.Google ScholarGoogle Scholar
  21. Shi, K., Irani, P., Gustafson, S., Subramanian, S., PressureFish: a method to improve control of discrete pressure-based input. In Proc. CHI '08. ACM (2008), 1295--1298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Silfverberg, M., MacKenzie, I. S., Kauppinen, T. An Isometric Joystick as a Pointing Device for Handheld Information Terminals. In Proc. Graphics Interface 2001, 119--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Stewart, C., Rohs, M., Krats, S., Essl, G., Characteristics of pressure-based input for mobile devices. In Proc. CHI '10. ACM(2010), 801--810. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Wilson, G., Stewart, C., Brewster, S. A., Pressure-based menu selection for mobile devices. In Proc. MobileHCI '10. ACM (2010), 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wilson, G., Brewster, S., Halvey, M., The effects of walking and control method on pressure-based interaction. Ext. Abstracts CHI '11. ACM (2011), 2275--2280. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Evaluation of human tangential force input performance

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      May 2012
      3276 pages
      ISBN:9781450310154
      DOI:10.1145/2207676

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 May 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader