skip to main content
10.1145/2207676.2207743acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects

Authors Info & Claims
Published:05 May 2012Publication History

ABSTRACT

Touché proposes a novel Swept Frequency Capacitive Sensing technique that can not only detect a touch event, but also recognize complex configurations of the human hands and body. Such contextual information significantly enhances touch interaction in a broad range of applications, from conventional touchscreens to unique contexts and materials. For example, in our explorations we add touch and gesture sensitivity to the human body and liquids. We demonstrate the rich capabilities of Touché with five example setups from different application domains and conduct experimental studies that show gesture classification accuracies of 99% are achievable with our technology.

Skip Supplemental Material Section

Supplemental Material

paperfile992-3.mov

mov

82.4 MB

References

  1. Barrett, G. and Omote, R. Projected-Capacitive Touch Technology. Information Display. (26) 3, 20 16--21.Google ScholarGoogle Scholar
  2. Bau, O., Poupyrev, I., Israr, A., Harrison, C., Teslatouch: electrovibration for touch surfaces. in UIST'10, 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Buxton, W. and Myers, B., A Study in Two-Handed Input. in CHI'86, 321--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cassinelli, Á., Perrin, S., Ishikawa, M., Smart laser-scanner for 3D human-machine interface. in CHI EA'05, 1138--1139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cheney, M., Isaacson, D., Newell, J. C. Electrical impedance tomography. SIAM Review, 41, 1, 1999. 85--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dietz, P. and Leigh, D., DiamondTouch: A Multi-User Touch Technology. in UIST '01, 219--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dietz, P. H., Han, J. Y., Westhues, J., Barnwell, J., Yerazunis, W., Submerging technologies. in SIGGRAPH'06 ETech, 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Follmer, S., Johnson, M., Adelson, E., Ishii, H., deForm: an interactive malleable surface for capturing 2.5 D arbitrary objects, tools and touch. in UIST '11, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Forlizzi, J., Disalvo, C., Zimmerman, J., Hurst, A., The SenseChair: The lounge chair as an intelligent assistive device for elders. in DUX '05, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Foster, K. R. and Lukaski, H. C. Whole-body impedance - what does it measure? The American journal of clinical nutrition, 64 (3). 1996. 388S-396S.Google ScholarGoogle Scholar
  11. Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M. , Martin, R. Design for wearability. in IEEE ISWC'98, 116--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H. The WEKA data mining software: an update. SIGKDD Explorations, 11, 1, 2009. 10--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Harker, F. R. and Maindonald, J. H. Ripening of Nectarine Fruit. Plant physiology, 106, 1994. 165--171.Google ScholarGoogle Scholar
  14. Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., Want, R., Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces. in CHI '98, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Harrison, C., Benko, H., Wilson, A., OmniTouch: wearable multitouch interaction everywhere. in UIST'11, 441--450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Harrison, C., Schwarz, J., Hudson, S., TapSense: enhancing finger interaction on touch surfaces. in UIST'11, 627--636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Harrison, C., Tan, D. , Morris, D., Skinput: Appropriating the Body as an Input Surface. in CHI '10, 453--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hilliges, O., Izadi, S., Wilson, A. D., Hodges, S., Garcia-Mendoza, A., Butz, A., Interactions in the air: adding further depth to interactive tabletops. in UIST '09, 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hinkley, K. and Sinclair, M., Touch-sensing input devices. in CHI '99, 223--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kry, P. G. and Pai, D. K. Grasp Recognition and Manipulation with the Tango. in ISER'06. 551--559.Google ScholarGoogle Scholar
  21. Lee, S. K., Buxton, W., Smith, K. C., A multi-touch three dimensional touch-sensitive tablet. in CHI '85, 21--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Matsushita, N. and Rekimoto, J., HoloWall: designing a finger, hand, body and object sensitive wall. UIST'97, 209--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Miyaki, T., Rekimoto, J. GraspZoom: zooming and scrolling control model for single-handed mobile interaction. in MobileHCI '09, 81--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Paradiso, J. and Hsiao, K., Swept-frequency, magnetically-coupled resonant tags for realtime, continuous, multiparameter control. in CHI EA '99, 212--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Philipp, H. Charge transfer sensing. Sens. Review, 19. 96--105.Google ScholarGoogle Scholar
  26. Pier, M. D. and Goldberg, I. R., Using water as interface media in VR applications. in CLIHC '05, ACM, 162--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Poupyrev, I. and Maruyama, S., Tactile interfaces for small touch screens. in UIST '03, 217--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Poupyrev, I., Oba, H., Ikeda, T., Iwabuchi, E., Designing embodied interfaces for casual sound recording devices. in CHI EA'08, 2129--2134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Poupyrev, I., Yeo, Z., Griffin, J. D., Hudson, S., Sensing human activities with resonant tuning. in CHI EA '10, 4135--4140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rekimoto, J., SmartSkin: An Infrastructure for Freehand Manipulation onInteractive Surfaces. in CHI '02, 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rosenberg, I. and Perlin, K. The UnMousePad: an interpolating multi-touch force-sensing input pad. in SIGGRAPH'09, Article 65:1--65:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Russo, A., Ahn, B. Y., Adams, J. J., Duoss, E. B., Bernhard, J. T., Lewis, J. A. Pen-on-Paper Flexible Electronics. Advanced materials, (23) 30. 2011. 3426--3430.Google ScholarGoogle Scholar
  33. Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R., Turner, J., Landay, J. A., Enabling always-available input with musclecomputer interfaces. in UIST '09, 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sato, M. Particle display system: a real world display with physically distributable pixels. in CHI EA '08, 3771--3776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Skulpone, S., Dittman, K. Adjustable proximity sensor. US Patent 3,743,853, 1973.Google ScholarGoogle Scholar
  36. Smith, J. R. Field mice: Extracting hand geometry from electric field measurements. IBM Systems Journal, 35. 587--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Song, H., Benko, H., Izadi, S., Cao, X., Hinckley, K., Grips and Gestures on a Multi-Touch Pen. in CHI '11, 1323--1332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Taylor, B. and Bove, V., Graspables: Grasp-recognition as a user interface. in CHI '09, 917--926. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wang, F. and Ren, X., Empirical evaluation for finger input properties in multi-touch interaction. in CHI '09, 1063--1072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wang, R. Y. and Popovic, J. Real-time hand-tracking with a color glove. in SIGGRAPH '09, Article 63, 63:1--63:8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Watanabe, J., VortexBath: Study of Tangible Interaction with Water in Bathroom for Accessing and Playing Media Files. in HCI '07, 1240--1248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Webster, J. G. Ed, Medical instrumentation: application and design. Wiley, 2010.Google ScholarGoogle Scholar
  43. Weiser, M. The computer for the 21st century. Scientific American (9). 94--104.Google ScholarGoogle Scholar
  44. Wimmer, R. and Baudisch, P., Modular and Deformable Touch-Sensitive Surfaces Based on Time Domain Reflectometry. in UIST '11, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yonezawa, T. and Mase, K., Tangible Sound: Musical instrument using fluid media. in ICMC2000.Google ScholarGoogle Scholar
  46. Zimmerman, T. G., Smith, J. R., Paradiso, J. A., Allport, D., Gershenfeld, N., Applying electric field sensing to human-computer interfaces. in CHI '95, 280--287. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      May 2012
      3276 pages
      ISBN:9781450310154
      DOI:10.1145/2207676

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 May 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader