skip to main content
10.1145/2037509.2037533acmotherconferencesArticle/Chapter ViewAbstractPublication PagescmsbConference Proceedingsconference-collections
research-article

Adapting rule-based model descriptions for simulating in continuous and hybrid space

Published:21 September 2011Publication History

ABSTRACT

Space plays an ever increasing role in cell biological modeling and simulation. This ranges from compartmental dynamics, via mesh-based approaches, to individuals moving in continuous space. An attributed, multi-level, rule-based language, ML-Space, is presented that allows to integrate these different types of spatial dynamics within one model. The associated simulator combines Gillespie's method, the Next Subvolume method, and Brownian dynamics. This allows the simulation of reaction diffusion systems as well as taking excluded volume effects into account. A small example illuminates the potential of the approach in dealing with complex spatial dynamics like those involved in studying the dynamics of lipid rafts and their role in receptor co-localization.

References

  1. E. Bartocci, F. Corradini, M. R. Di Berardini, E. Merelli, and L. Tesei. Shape calculus. A spatial mobile calculus for 3D shapes. Scientific Annals of Computer Science, 20(20):1--31, 2010.Google ScholarGoogle Scholar
  2. D. Bernstein. Simulating mesoscopic reaction-diffusion systems using the gillespie algorithm. Physical Review E, 71(4):041103+, Apr. 2005.Google ScholarGoogle Scholar
  3. A. T. Bittig and A. M. Uhrmacher. Spatial modeling in cell biology at multiple levels. In B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, editors, Proceedings of the 2010 Winter Simulation Conference, pages 608--619. IEEE Computer Science, Dec. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Cardelli. Brane calculi. In Computational Methods in Systems Biology, pages 257--278, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. F. Ciocchetta, A. Degasperi, J. Hillston, and M. Calder. Some investigations concerning the ctmc and the ode model derived from bio-pepa. Electr. Notes Theor. Comput. Sci., 229(1):145--163, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Deaconu and A. Lejay. Simulation of exit times and positions for brownian motions and diffusions. Proc. Appl. Math. Mech., 7(1):1081401--1081402, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Systems biology, 1(2):230--236, Dec. 2004.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt. Simulation of stochastic reaction-diffusion processes on unstructured meshes. ArXiv e-prints, Apr. 2008.Google ScholarGoogle Scholar
  9. R. Ewald, J. Himmelspach, M. Jeschke, S. Leye, and A. M. Uhrmacher. Flexible experimentation in the modeling and simulation framework JAMES II--implications for computational systems biology. Brief Bioinform, 11(3):290--300, Jan. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. Fange, O. G. Berg, P. Sjöberg, and J. Elf. Stochastic reaction-diffusion kinetics in the microscopic limit. Proceedings of the National Academy of Sciences, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. L. Ferm, A. Hellander, and P. Lötstedt. An adaptive algorithm for simulation of stochastic reaction--diffusion processes. Journal of Computational Physics, 229(2):343--360, Jan. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. Gruenert, B. Ibrahim, T. Lenser, M. Lohel, T. Hinze, and P. Dittrich. Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinformatics, 11(1):307+, 2010.Google ScholarGoogle Scholar
  13. J. F. Hancock. Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol, 7(6):456--462, June 2006.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. A. Harris, J. S. Hogg, and J. R. Faeder. Compartmental rule-based modeling of biochemical systems. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, editors, Proceedings of the 2009 Winter Simulation Conference, pages 908--919. IEEE Computer Science, Dec. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Jeschke. Efficient Non-spatial and Spatial Simulation of Biochemical Reaction Networks. PhD thesis, University of Rostock, 18051 Rostock, Oct. 2010.Google ScholarGoogle Scholar
  16. M. Jeschke, R. Ewald, and A. M. Uhrmacher. Exploring the performance of spatial stochastic simulation algorithms. J. Comput. Phys., 230:2562--2574, April 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Jeschke and A. M. Uhrmacher. Multi-resolution spatial simulation for molecular crowding. In S. J. Mason, R. R. Hill, L. Moench, and O. Rose, editors, Proceedings of the 2008 Winter Simulation Conference, pages 1384--1392. IEEE, Dec. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. John, R. Ewald, and A. M. Uhrmacher. A spatial extension to the π calculus. Electron. Notes Theor. Comput. Sci., 194(3):133--148, Jan. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. John, C. Lhoussaine, J. Niehren, and A. Uhrmacher. The attributed Pi-Calculus with priorities. Transactions on Computational Systems Biology XII, 5945:13--76, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. John, C. Lhoussaine, J. Niehren, and C. Versari. Biochemical reaction rules with constraints. In G. Barthe, editor, ESOP, volume 6602 of Lecture Notes in Computer Science, pages 338--357. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. N. Kholodenko. Cell-signalling dynamics in time and space. Nature Reviews Molecular Cell Biology, 7(3):165--176, Feb. 2006.Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Lingwood and K. Simons. Lipid rafts as a Membrane-Organizing principle. Science, 327(5961):46--50, Jan. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  23. C. Maus, M. John, S. Rybacki, and A. M. Uhrmacher. Towards Rule-Based Multi-Level modeling. Poster, 2010.Google ScholarGoogle Scholar
  24. C. Maus, S. Rybacki, and A. M. Uhrmacher. Rule-based multi-level modeling of cell biological systems. submitted, 2011.Google ScholarGoogle Scholar
  25. D. V. Nicolau, K. Burrage, R. G. Parton, and J. F. Hancock. Identifying optimal lipid raft characteristics required to promote nanoscale Protein-Protein interactions on the plasma membrane. Mol. Cell. Biol., 26(1):313--323, Jan. 2006.Google ScholarGoogle ScholarCross RefCross Ref
  26. C. Priami and P. Quaglia. Beta binders for biological interactions. In Computational Methods in Systems Biology, pages 20--33. Springer Berlin Heidelberg, April 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. Radhakrishnan, A. Halász, D. Vlachos, and J. S. Edwards. Quantitative understanding of cell signaling: the importance of membrane organization. Current Opinion in Biotechnology, 21(5):677--682, Oct. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Regev, E. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients: an abstraction for biological compartments. Theor. Comput. Sci., 325:141--167, September 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Rybacki, J. Himmelspach, and A. M. Uhrmacher. Experiments with single core, multi-core, and gpu based computation of cellular automata. In Proceedings of the 2009 First International Conference on Advances in System Simulation, pages 62--67, Washington, DC, USA, 2009. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. Takahashi, S. Arjunan, and M. Tomita. Space in systems biology of signaling pathways -- towards intracellular molecular crowding in silico. FEBS Letters, 579(8):1783--1788, Mar. 2005.Google ScholarGoogle ScholarCross RefCross Ref
  31. K. Takahashi, S. Tánase-Nicola, and P. R. ten Wolde. Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proceedings of the National Academy of Sciences, 107(6):2473--2478, Feb. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  32. D. S. Wishart, R. Yang, D. Arndt, P. Tang, and J. Cruz. Dynamic cellular automata: An alternative approach to cellular simulation. In Silico Biology, 5(2):139--161, Jan. 2005.Google ScholarGoogle Scholar

Index Terms

  1. Adapting rule-based model descriptions for simulating in continuous and hybrid space

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            CMSB '11: Proceedings of the 9th International Conference on Computational Methods in Systems Biology
            September 2011
            224 pages
            ISBN:9781450308175
            DOI:10.1145/2037509

            Copyright © 2011 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 21 September 2011

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader