skip to main content
10.1145/1837934.1837975acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Complexity of creative telescoping for bivariate rational functions

Authors Info & Claims
Published:25 July 2010Publication History

ABSTRACT

The long-term goal initiated in this work is to obtain fast algorithms and implementations for definite integration in Almkvist and Zeilberger's framework of (differential) creative telescoping. Our complexity-driven approach is to obtain tight degree bounds on the various expressions involved in the method. To make the problem more tractable, we restrict to bivariate rational functions. By considering this constrained class of inputs, we are able to blend the general method of creative telescoping with the well-known Hermite reduction. We then use our new method to compute diagonals of rational power series arising from combinatorics.

References

  1. G. Almkvist and D. Zeilberger. The method of differentiating under the integral sign. J. Symb. Comput., 10:571--591, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Apagodu and D. Zeilberger. Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. Adv. in Appl. Math., 37(2):139--152, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Bostan, F. Chyzak, B. Salvy, G. Lecerf, and É. Schost. Differential equations for algebraic functions. In ISSAC'07, pages 25--32. ACM, New York, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Bronstein. Symbolic Integration I: Transcendental functions, volume 1 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, second edition, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Flaxman, A. W. Harrow, and G. B. Sorkin. Strings with maximally many distinct subsequences and substrings. Electron. J. Combin., 11(1):R8, 10 pp., 2004.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, second edition, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. K. O. Geddes and H. Q. Le. An algorithm to compute the minimal telescopers for rational functions (differential-integral case). In Mathematical Software, pages 453--463. WSP, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Gerhard. Fast modular algorithms for squarefree factorization and Hermite integration. Appl. Algebra Engrg. Comm. Comput., 11(3):203--226, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Gerhard. Modular Algorithms in Symbolic Summation and Symbolic Integration (LNCS). Springer-Verlag, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Hermite. Sur l'intégration des fractions rationnelles. Ann. Sci. École Norm. Sup. (2), 1:215--218, 1872.Google ScholarGoogle ScholarCross RefCross Ref
  11. E. Horowitz. Algorithms for partial fraction decomposition and rational function integration. In SYMSAC'71, pages 441--457, New York, USA, 1971. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Q. Le. On the differential-integral analogue of Zeilberger's algorithm to rational functions. In Proc. of the 2000 Asian Symposium on Computer Mathematics, pages 204--213, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  13. L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373--378, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. Lipshitz. D-finite power series. J. Algebra, 122(2):353--373, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Ostrogradsky. De l'intégration des fractions rationnelles. Bull. de la classe physico-mathématique de l'Acad. Impériale des Sciences de Saint-Pétersbourg, 4:145--167, 286--300, 1845.Google ScholarGoogle Scholar
  16. R. P. Stanley. Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. CUP, 1999.Google ScholarGoogle Scholar
  17. A. Storjohann and G. Villard. Computing the rank and a small nullspace basis of a polynomial matrix. In ISSAC'05, pages 309--316. ACM, New York, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math., 32:321--368, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11(3):195--204, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. http://algo.inria.fr/chen/BivRatCT/, 2010.Google ScholarGoogle Scholar

Index Terms

  1. Complexity of creative telescoping for bivariate rational functions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISSAC '10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation
      July 2010
      366 pages
      ISBN:9781450301503
      DOI:10.1145/1837934

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ISSAC '10 Paper Acceptance Rate45of110submissions,41%Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader