skip to main content
10.1145/1833349.1778854acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Feature-aligned T-meshes

Published:26 July 2010Publication History

ABSTRACT

High-order and regularly sampled surface representations are more efficient and compact than general meshes and considerably simplify many geometric modeling and processing algorithms. A number of recent algorithms for conversion of arbitrary meshes to regularly sampled form (typically quadrangulation) aim to align the resulting mesh with feature lines of the geometry. While resulting in a substantial improvement in mesh quality, feature alignment makes it difficult to obtain coarse regular patch partitions of the mesh.

In this paper, we propose an approach to constructing patch layouts consisting of small numbers of quadrilateral patches while maintaining good feature alignment. To achieve this, we use quadrilateral T-meshes, for which the intersection of two faces may not be the whole edge or vertex, but a part of an edge. T-meshes offer more flexibility for reduction of the number of patches and vertices in a base domain while maintaining alignment with geometric features. At the same time, T-meshes retain many desirable features of quadrangulations, allowing construction of high-order representations, easy packing of regularly sampled geometric data into textures, as well as supporting different types of discretizations for physical simulation.

Skip Supplemental Material Section

Supplemental Material

tp081-10.mp4

References

  1. Bazilevs, Y., Calo, V., Cottrell, J., Evans, J., Hughes, T., Lipton, S., Scott, M., and Sederberg, T. 2009. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering.Google ScholarGoogle Scholar
  2. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal Flattening by Curvature Prescription and Metric Scaling. In Computer Graphics Forum, vol. 27, Blackwell Synergy, 449--458.Google ScholarGoogle Scholar
  3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Carr, N., Hoberock, J., Crane, K., and Hart, J. 2006. Rectangular multi-chart geometry images. In Symposium on Geometry Processing, Eurographics Association, 190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Daniels, J., Silva, C., and Cohen, E. 2009. Semi-regular quadrilateral-only remeshing from simplified base domains. In Computer Graphics Forum, vol. 28, Blackwell Publishing Ltd, 1427--1435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Daniels, J., Silva, C. T., and Cohen, E. 2009. Localized quadrilateral coarsening. Computer Graphics Forum 28, 5, 1437--1444.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z., and Feng, Y. 2008. Polynomial splines over hierarchical T-meshes. Graphical Models 70, 4, 76--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dong, S., Bremer, P., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Eppstein, D., and Erickson, J. 1999. Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions. Discrete and Computational Geometry 22, 4, 569--592.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gu, X., and Yau, S. 2003. Global conformal surface parameterization. Symposium on Geometry Processing, 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. He, Y., Wang, K., Wang, H., Gu, X., and Qin, H. 2006. Manifold T-spline. Lecture Notes in Computer Science 4077, 409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hildebrandt, K., Polthier, K., and Wardetzky, M. 2005. Smooth feature lines on surface meshes. In Symposium on Geometry Processing, Eurographics Association, 85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice. SIGGRAPH Course Notes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. In International Conference on Computer Graphics and Interactive Techniques, ACM New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kalogerakis, E., Simari, P., Nowrouzezahrai, D., and Singh, K. 2007. Robust statistical estimation of curvature on discretized surfaces. In Symposium on Geometry Processing, 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kovacs, D., Myles, A., and Zorin, D. 2009. Anisotropic harmonic quadrangulation. In Symposium on Geometry Processing 2009 Poster.Google ScholarGoogle Scholar
  21. Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM New York, NY, USA, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, W., Ray, N., and Lévy, B. 2006. Automatic and interactive mesh to T-spline conversion. In Symposium on Geometry Processing, Eurographics Association, 200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, X., Deng, J., and Chen, F. 2007. Surface modeling with polynomial splines over hierarchical T-meshes. The Visual Computer 23, 12, 1027--1033. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li, X., Deng, J., and Chen, F. 2009. Polynomial splines over general T-meshes. The Visual Computer, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Marinov, M., and Kobbelt, L. 2005. Automatic generation of structure preserving multiresolution models. In Computer Graphics Forum, vol. 24, Amsterdam: North Holland, 1982-, 479--486.Google ScholarGoogle Scholar
  26. Ohtake, Y., Belyaev, A., and Seidel, H. 2004. Ridge-valley lines on meshes via implicit surface fitting. In International Conference on Computer Graphics and Interactive Techniques, ACM New York, NY, USA, 609--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pietroni, N., Tarini, M., and Cignoni, P. 2009. Almost isometric mesh parameterization through abstract domains. IEEE Transactions on Visualization and Computer Graphics 99, RapidPosts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sederberg, T., Zheng, J., Bakenov, A., and Nasri, A. 2003. T-splines and T-NURCCs. In ACM SIGGRAPH 2003 Papers, ACM, 484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sederberg, T., Cardon, D., Finnigan, G., North, N., Zheng, J., and Lyche, T. 2004. T-spline simplification and local refinement. ACM Trans. Graph. 23, 3, 276--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends® in Computer Graphics and Vision 2, 2, 171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes.Google ScholarGoogle Scholar
  36. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. 2010. Practical quad mesh simplification. Computer Graphics Forum 29, 2.Google ScholarGoogle ScholarCross RefCross Ref
  37. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. Symposium on Geometry Processing, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Torn, A., and Zilinskas, A. 1989. Global Optimization, volume 350 of. Lecture Notes in Computer Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Weinkauf, T., and Günther, D. 2009. Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods. In Computer Graphics Forum, vol. 28, Blackwell Publishing Ltd, 1519--1528. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Feature-aligned T-meshes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH '10: ACM SIGGRAPH 2010 papers
        July 2010
        984 pages
        ISBN:9781450302104
        DOI:10.1145/1833349

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 26 July 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGGRAPH '10 Paper Acceptance Rate103of390submissions,26%Overall Acceptance Rate1,822of8,601submissions,21%

        Upcoming Conference

        SIGGRAPH '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader