skip to main content
10.1145/1833349.1778850acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Apparent display resolution enhancement for moving images

Published:26 July 2010Publication History

ABSTRACT

Limited spatial resolution of current displays makes the depiction of very fine spatial details difficult. This work proposes a novel method applied to moving images that takes into account the human visual system and leads to an improved perception of such details. To this end, we display images rapidly varying over time along a given trajectory on a high refresh rate display. Due to the retinal integration time the information is fused and yields apparent super-resolution pixels on a conventional-resolution display. We discuss how to find optimal temporal pixel variations based on linear eye-movement and image content and extend our solution to arbitrary trajectories. This step involves an efficient method to predict and successfully treat potentially visible flickering. Finally, we evaluate the resolution enhancement in a perceptual study that shows that significant improvements can be achieved both for computer generated images and photographs.

Skip Supplemental Material Section

Supplemental Material

tp088-10.mp4

mp4

64.9 MB

References

  1. Allen, W., and Ulichney, R. 2005. Wobulation: Doubling the addressed resolution of projection displays. In Proceedings of the Symposium Digest of Technical Papers (SID), vol. 47.4 of The Society for Information Display, 1514--1517.Google ScholarGoogle Scholar
  2. Bijl, P., Schutte, K., and Hogervorst, M. A. 2006. Applicability of TOD, MTDP, MRT and DMRT for dynamic image enhancement techniques. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6207.Google ScholarGoogle Scholar
  3. Burr, D. C. 1979. Acuity for apparent vernier offset. Vision Research 19, 7, 835--837.Google ScholarGoogle ScholarCross RefCross Ref
  4. Coleman, T. F., and Li, Y. 1996. A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. on Optimization 6, 4, 1040--1058. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E. 1990. Human photoreceptor topography. The Journal of Comparative Neurology 292, 4, 497--523.Google ScholarGoogle ScholarCross RefCross Ref
  6. Damera-Venkata, N., and Chang, N. L. 2009. Display supersampling. ACM Trans. Graph. 28, 1, 9:1--9:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. de Lange, H. 1958. Research into the dynamic nature of the human fovea - Cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. J. Opt. Soc. Am. 48, 11, 777--783.Google ScholarGoogle ScholarCross RefCross Ref
  8. Deering, M. F. 2005. A photon accurate model of the human eye. ACM Trans. Graph. (Proc. SIGRAPH 2005) 24, 3, 649--658. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fahle, M., and Poggio, T. 1981. Visual hyperacuity: Spatiotemporal interpolation in human vision. Proceedings of the Royal Society of London. Series B, Biological Sciences 213, 1193, 451--477.Google ScholarGoogle Scholar
  10. Hara, Z., and Shiramatsu, N. 2000. Improvement in the picture quality of moving pictures for matrix displays. J. SID 8, 2, 129--137.Google ScholarGoogle Scholar
  11. Kalloniatis, M., and Luu, C. 2009. Temporal resolution. http://webvision.med.utah.edu/temporal.html.Google ScholarGoogle Scholar
  12. Klompenhouwer, M. A., and de Haan, G. 2003. Subpixel image scaling for color-matrix displays. J. SID 11, 1, 99--108.Google ScholarGoogle Scholar
  13. Kopf, J., Uyttendaele, M., Deussen, O., and Cohen, M. 2007. Capturing and viewing gigapixel images. ACM Trans. Graph. (Proc. SIGGRAPH 2007) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Krapels, K., Driggers, R. G., and Teaney, B. 2005. Target-acquisition performance in undersampled infrared imagers: static imagery to motion video. Applied Optics 44, 33, 7055--7061.Google ScholarGoogle ScholarCross RefCross Ref
  15. Krauzlis, R., and Lisberger, S. 1994. Temporal properties of visual motion signals for the initiation of smooth pursuit eye movements in monkeys. J Neurophysiol. 72, 1, 150--162.Google ScholarGoogle ScholarCross RefCross Ref
  16. Laird, J., Rosen, M., Pelz, J., Montag, E., and Daly, S. 2006. Spatio-velocity CSF as a function of retinal velocity using unstabilized stimuli. In Human Vision and Electronic Imaging XI, vol. 6057 of SPIE Proceedings Series, 32--43.Google ScholarGoogle Scholar
  17. Mäkelä, P., Rovamo, J., and Whitaker, D. 1994. Effects of luminance and external temporal noise on flicker sensitivity as a function of stimulus size at various eccentricities. Vision Research 34, 15, 1981--91.Google ScholarGoogle ScholarCross RefCross Ref
  18. Martinez-Conde, S., Macknik, S. L., and Hubel, D. H. 2004. The role of fixational eye movements in visual perception. Nature Reviews Neuroscience 5, 3, 229--239.Google ScholarGoogle ScholarCross RefCross Ref
  19. McKee, S. P., and Taylor, D. G. 1984. Discrimination of time: comparison of foveal and peripheral sensitivity. J. Opt. Soc. Am. A 1, 6, 620--628.Google ScholarGoogle ScholarCross RefCross Ref
  20. Messing, D. S., and Kerofsky, L. J. 2006. Using optimal rendering to visually mask defective subpixels. In Human Vision and Electr. Imaging XI, vol. 6057 of SPIE Proc. Series, 236--247.Google ScholarGoogle Scholar
  21. Mitchell, D. P., and Netravali, A. N. 1988. Reconstruction filters in computer-graphics. Proc. SIGGRAPH 22, 4, 221--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Park, S., Park, M., and Kang, M. 2003. Super-resolution image reconstruction: A technical overview. IEEE Signal Processing Magazine 20, 3, 21--36.Google ScholarGoogle ScholarCross RefCross Ref
  23. Platt, J. 2000. Optimal filtering for patterned displays. Signal Processing Letters, IEEE 7, 7, 179--181.Google ScholarGoogle ScholarCross RefCross Ref
  24. Purves, D., Shimpi, A., and Lotto, B. R. 1999. An empirical explanation of the Cornsweet effect. J. Neuroscience 19, 19, 8542--8551.Google ScholarGoogle ScholarCross RefCross Ref
  25. Schütz, A. C., Braun, D. I., Kerzel, D., and Gegenfurtner, K. R. 2008. Improved visual sensitivity during smooth pursuit eye movements. Nat. Neuroscience 11, 10, 1211--1216.Google ScholarGoogle ScholarCross RefCross Ref
  26. Tekalp, A. 1995. Digital Video Processing. Prentice Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Van Hateren, J. H. 2005. A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells. J. Vision 5, 4, 331--347.Google ScholarGoogle ScholarCross RefCross Ref
  28. Wandell, B. 1995. Foundations of Vision. Sinauer Associates.Google ScholarGoogle Scholar
  29. Zavagno, D., and Caputo, G. 2001. The glare effect and the perception of luminosity. Perception 30, 2, 209--222.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Apparent display resolution enhancement for moving images

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH '10: ACM SIGGRAPH 2010 papers
        July 2010
        984 pages
        ISBN:9781450302104
        DOI:10.1145/1833349

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 26 July 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGGRAPH '10 Paper Acceptance Rate103of390submissions,26%Overall Acceptance Rate1,822of8,601submissions,21%

        Upcoming Conference

        SIGGRAPH '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader