skip to main content
10.1145/1830483.1830514acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

On the use of genetic programming for the prediction of survival in cancer

Published:07 July 2010Publication History

ABSTRACT

The classification of cancer patients into risk classes is a very active field of research, with direct clinical applications. We have recently compared several machine learning methods on the well known 70-genes signature dataset. In that study, genetic programming showed promising results, given that it outperformed all the other techniques. Nevertheless, the study was preliminary, mainly because the validation dataset was preprocessed and all its features binarized in order to use logical operators for the genetic programming functional nodes. If this choice allowed simple interpretation of the solutions from the biological viewpoint, on the other hand the binarization of data was limiting, since it amounts to a sizable loss of information. The goal of this paper is to overcome this limitation, using the 70-genes signature dataset with real-valued expression data. The results we present show that genetic programming using the number of incorrectly classified instances as fitness function is not able to outperform the other machine learning methods. However, when a weighted average between false positives and false negatives is used to calculate fitness values, genetic programming obtains performances that are comparable with the other methods in the minimization of incorrectly classified instances and outperforms all the other methods in the minimization of false negatives, which is one of the main goals in breast cancer clinical applications. Also in this case, the solutions returned by genetic programming are simple, easy to understand, and they use a rather limited subset of the available features.

References

  1. U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumour and normal colon tissues probed by oligonucleotide arrays. In Proc. Nat. Acad. Sci., pages 6745--6750. USA 96, 1999.Google ScholarGoogle Scholar
  2. F. Archetti, S. Lanzeni, E. Messina, and L. Vanneschi. Genetic programming for human oral bioavailability of drugs. In M. Cattolico et al., editor, Proceedings of the 8th annual conference on Genetic and Evolutionary Computation, pages 255--262, Seattle, Washington, USA, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. Archetti, E. Messina, S. Lanzeni, and L. Vanneschi. Genetic programming and other machine learning approaches to predict median oral lethal dose (LD50) and plasma protein binding levels (%PPB) of drugs. In E. Marchiori et al., editor, Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Proceedings of the Fifth European Conference, EvoBIO 2007, Lecture Notes in Computer Science, LNCS 4447, pages 11--23. Springer, Berlin, Heidelberg, New York, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. F. Archetti, E. Messina, S. Lanzeni, and L. Vanneschi. Genetic programming for computational pharmacokinetics in drug discovery and development. Genetic Programming and Evolvable Machines, 8(4):17--26, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Bojarczuk, H. Lopes, and A. Freitas. Data mining with constrained-syntax genetic programming: applications to medical data sets. Proceedings Intelligent Data Analysis in Medicine and Pharmacology, 1, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. In Machine Learning, pages 277--296, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. N. Friedman, M. Linial, I. Nachmann, and D. Peer. Using bayesian networks to analyze expression data. J. Computational Biology, 7:601--620, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389--422, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, London, UK, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. P. Helmbold and M. K. Warmuth. On weak learning. J. Comput. Syst. Sci., 50(3):551--573, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. C. H. Hernandez, B. Duval, and J. Hao. A genetic embedded approach for gene selection and classification of microarray data. Lecture Notes in Computer Science, 4447:90--101, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, Michigan, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Hong and S. Cho. The classification of cancer based on dna microarray data that uses diverse ensemble genetic programming. Artif. Intell. Med, 36:43--58, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Hsu, S. Tang, and S. Halgamuge. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. Bioinformatics, 19(16):2131--40, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. R. Koza. Genetic Programming. The MIT Press, Cambridge, Massachusetts, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Liu, G. Cutler, W. Li, Z. Pan, S. Peng, T. Hoey, L. Chen, and X.-B. Ling. Multiclass cancer classification and biomarker discovery using ga-based algorithms. Bioinformatics, 21:2691--2697, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Lu and J. Han. Cancer classification using gene expression data. Inf. Syst., 28(4):243--268, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Michie, D. Spiegelhalter, and C. Taylor. Machine learning, neural and statistical classification. Prentice Hall, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Moore, J. Parker, and L. Hahn. Symbolic discriminant analysis for mining gene expression patterns. Lecture Notes in Artificial Intelligence, 2167:372--381, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. R. Nevins and A. Potti. Mining gene expression profiles: expression signatures as cancer phenotypes. Nat Rev Genet, 8(8):601--609, Aug 2007.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Park and J. W. Sandberg. Universal approximation using radial basis functions network. Neural Computation, 3:246--257, 1991. Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Platt. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods -- Support Vector Learning, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481--1497, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  25. R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Rosskopf, H. Schmidt, U. Feldkamp, and W. Banzhaf. Genetic programming based dna microarray analysis for classification of tumour tissues. Technical Report Technical Report 2007-03, Memorial University of Newfoundland, 2007.Google ScholarGoogle Scholar
  27. S. Haykin. Neural Networks: a comprehensive foundation. Prentice Hall, London, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Silva. GPLAB - a genetic programming toolbox for MATLAB, version 3.0, 2007. http://gplab.sourceforge.net.Google ScholarGoogle Scholar
  29. M. J. van de Vijver, Y. D. He, L. J. van't Veer, H. Dai, A. A. M. Hart, D. W. Voskuil, G. J. Schreiber, J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish, D. Atsma, A. Witteveen, A. Glas, L. Delahaye, T. van der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers, S. H. Friend, and R. Bernards. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med, 347(25):1999--2009, Dec 2002.Google ScholarGoogle ScholarCross RefCross Ref
  30. L. J. van 't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871):530--536, Jan 2002.Google ScholarGoogle ScholarCross RefCross Ref
  31. L. Vanneschi, A. Farinaccio, M. Giacobini, M. Antoniotti, G. Mauri, and P. Provero. Identification of individualized feature combinations for survival prediction in breast cancer: A comparison of machine learning techniques. In M. Giacobini, et al., editors, Proceedings of the EvoBIO 2010 Conference, Springer, LNCS, 2010. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Weka. A multi-task machine learning software developed by Waikato University, 2006. See www.cs.waikato.ac.nz/ml/weka.Google ScholarGoogle Scholar
  34. J. Yu, J. Yu, A. A. Almal, S. M. Dhanasekaran, D. Ghosh, W. P. Worzel, and A. M. Chinnaiyan. Feature selection and molecular classification of cancer using genetic programming. Neoplasia, 9(4):292--303, 2007.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    GECCO '10: Proceedings of the 12th annual conference on Genetic and evolutionary computation
    July 2010
    1520 pages
    ISBN:9781450300728
    DOI:10.1145/1830483

    Copyright © 2010 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 7 July 2010

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate1,669of4,410submissions,38%

    Upcoming Conference

    GECCO '24
    Genetic and Evolutionary Computation Conference
    July 14 - 18, 2024
    Melbourne , VIC , Australia

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader