skip to main content
10.1145/1810959.1811030acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Steinitz theorems for orthogonal polyhedra

Published:13 June 2010Publication History

ABSTRACT

We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we characterize the graphs of simple orthogonal polyhedra: they are exactly the 3-regular bipartite planar graphs in which the removal of any two vertices produces at most two connected components. We also characterize two subclasses of these polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, and xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs

References

  1. A. A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic searching and priority queues. Proc. 32nd ACM Symp. Theory of Computing (STOC 2000), pp. 335--342, 2000, doi:10.1145/335305.335344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Aziza and T. Biedl. Hexagonal grid drawings: algorithms and lower bounds. Proc. 12th Int. Symp. Graph Drawing (GD 2004), 3383 edition, pp. 18--24. Springer-Verlag, Lecture Notes in Computer Science, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. L. Balinski. On the graph structure of convex polyhedra in n-space. Pacific J. Math. 11(2):431--434, 1961, http://projecteuclid.org/euclid.pjm/1103037323.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. W. Barnette. Conjecture 5. Recent Progress in Combinatorics, p. 343. Academic Press, 1969.Google ScholarGoogle Scholar
  5. V. Batagelj. An improved inductive definition of two restricted classes of triangulations of the plane. Combinatorics and Graph Theory, Warsaw, 1987, 25 edition, pp. 11--18. PWN, Banach Center Publ., 1989.Google ScholarGoogle Scholar
  6. S. Bhatt and S. Cosmodakis. The complexity of minimizing wire lengths in VLSI layouts. Inform. Proc. Lett. 25:263--267, 1987, doi:10.1016/0020-0190(87)90173-6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Biedl, E. Demaine, M. Demaine, A. Lubiw, M. Overmars, J. O'Rourke, S. Robbins, and S. Whitesides. Unfolding some classes of orthogonal polyhedra. Proc. 10th Canadian Conference on Computational Geometry (CCCG'98), 1998, http://erikdemaine.org/papers/CCCG98b/.Google ScholarGoogle Scholar
  8. T. Biedl and B. Genc. When can a graph form an orthogonal polyhedron? Proc. 16th Canadian Conf. Computational Geometry (CCCG 2004), pp. 53--56, 2004, http://www.cccg.ca/proceedings/2004/15.pdf.Google ScholarGoogle Scholar
  9. T. Biedl and B. Genc. Cauchy's theorem for orthogonal polyhedra of genus 0. Proc. 17th European Symp. Algorithms (ESA 2009), 5757 edition, pp. 71--83. Springer-Verlag, Lecture Notes in Computer Science, 2009, doi:10.1007/978-3-642-04128-0_7.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Bokowski and A. Guedes de Oliveira. On the generation of oriented matroids. Discrete and Computational Geometry 24(2-3):197--208, 2000, doi:10.1007/s004540010027.Google ScholarGoogle ScholarCross RefCross Ref
  11. G. Brinkmann and B. D. McKay. Fast generation of planar graphs. Communications in Mathematical and in Computer Chemistry 58(2):323--357, 2007, http://cs.anu.edu.au/people/bdm/papers/plantri-full.pdf.Google ScholarGoogle Scholar
  12. M. Bruls, K. Huizing, and J. J. van Wijk. Squarified treemaps. Data Visualization 2000: Proc. Joint Eurographics and IEEE TCVG Symp. on Visualization, pp. 33--42. Springer-Verlag, 2000, http://www.win.tue.nl/~vanwijk/stm.pdf.Google ScholarGoogle Scholar
  13. A. L. Cauchy. Sur les polygones et polyèdres. J. École Polytechnique 19:87--98, 1813.Google ScholarGoogle Scholar
  14. N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1):210--223, 1985, doi:10.1137/0214017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Chrobak and D. Eppstein. Planar orientations with low out-degree and compaction of adjacency matrices. Theoretical Computer Science 86(2):243--266, September 1991, doi:10.1016/0304-3975(91)90020-3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Cohn, M. Larsen, and J. Propp. The shape of a typical boxed plane partition. New York J. Math. 4:137--165, 1998, http://arxiv.org/abs/math.CO/9801059arXiv:math.CO/9801059, http://nyjm.albany.edu:8000/j/1998/4_137.html.Google ScholarGoogle Scholar
  17. R. Connelly. A counterexample to the rigidity conjecture for polyhedra. Pub. Math. de l'IHÉS 47:333--338, 1977, doi:10.1007/BF02684342.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. Connelly, I. Sabitov, and A. Walz. The bellows conjecture. Beitrage Algebra Geom. 38:1--10, 1997, http://www.emis.de/journals/BAG/vol.38/no.1/1.html.Google ScholarGoogle Scholar
  19. A. Császár. A polyhedron without diagonals. Acta Sci. Math. Szeged 13:140--142, 1949.Google ScholarGoogle Scholar
  20. G. Di Battista and R. Tamassia. Incremental planarity testing. Proc. 30th Symp. Foundations of Computer Science (FOCS 1989), pp. 436--441, 1989, doi:10.1109/SFCS.1989.63515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. Di Battista and R. Tamassia. On-line graph algorithms with SPQR-trees. Proc. 17th Internat. Colloq. Automata, Languages and Programming (ICALP 1990), 443 edition, pp. 598--611. Springer-Verlag, Lecture Notes in Computer Science, 1990, doi:10.1007/BFb0032061. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. B. Dillencourt and W. D. Smith. Graph-theoretical conditions for inscribability and Delaunay realizability. Discrete Math. 161(1-3):63--77, 1996, doi:10.1016/0012-365X(95)00276-3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Donoso and J. O'Rourke. Nonorthogonal polyhedra built from rectangles. Proc. 14th Canadian Conference on Computational Geometry (CCCG'98), 2002, http://arxiv.org/abs/cs/0110059arXiv:cs/0110059.Google ScholarGoogle Scholar
  24. V. Dujmović, D. Eppstein, M. Suderman, and D. R. Wood. Drawings of planar graphs with few slopes and segments. Computational Geometry Theory & Applications 38(3):194--212, 2007, doi:10.1016/j.comgeo.2006.09.002, arXiv:math/0606450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. V. Dujmović, M. Suderman, and D. R. Wood. Graph drawings with few slopes. Computational Geometry Theory & Applications 38(3):181--193, 2007, doi:10.1016/j.comgeo.2006.08.002, arXiv:math/0606446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C. F. Earl and L. J. March. Architectural applications of graph theory. Applications of Graph Theory, pp. 327--355. Academic Press, 1979.Google ScholarGoogle Scholar
  27. D. Eppstein. The lattice dimension of a graph. Eur. J. Combinatorics 26(5):585--592, July 2005, doi:10.1016/j.ejc.2004.05.001, arXiv:cs.DS/0402028. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Eppstein. Cubic partial cubes from simplicial arrangements. Electronic J. Combinatorics 13(1, R79):1--14, September 2006, arXiv:math.CO/0510263, http://www.combinatorics.org/Volume_13/Abstracts/v13i1r79.html.Google ScholarGoogle Scholar
  29. D. Eppstein. Isometric diamond subgraphs. Proc. 16th Int. Symp. Graph Drawing (GD 2008), 5417 edition, pp. 384--389. Springer-Verlag, Lecture Notes in Computer Science, 2008, doi:10.1007/978-3-642-00219-9_37, arXiv:0807.2218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Eppstein. The topology of bendless three-dimensional orthogonal graph drawing. Proc. 16th Int. Symp. Graph Drawing (GD 2008), 5417 edition, pp. 78--89. Springer-Verlag, Lecture Notes in Computer Science, 2008, doi:10.1007/978-3-642-00219-9_9, arXiv:0709.4087. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Eppstein and E. Mumford. Orientation-constrained rectangular layouts. Proc. Algorithms and Data Structures Symposium (WADS 2009), 5664 edition, pp. 266--277. Springer-Verlag, Lecture Notes in Computer Science, 2009, arXiv:0904.4312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Eppstein and E. Mumford. Steinitz Theorems for Orthogonal Polyhedra, arXiv:arXiv:0912.0537v1. Electronic preprint, 2010.Google ScholarGoogle Scholar
  33. D. Eppstein, E. Mumford, B. Speckmann, and K. A. B. Verbeek. Area-universal rectangular layouts. Proc. 25th ACM Symp. Comp. Geom., pp. 267--276, 2009, doi:10.1145/1542362.1542411, arXiv:0901.3924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Felsner and F. Zickfeld. Schnyder woods and orthogonal surfaces. Discrete and Computational Geometry 40(1):103--126, 2008, doi:10.1007/s00454-007-9027-9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. É. Fusy. Transversal structures on triangulations, with application to straight-line drawing. Proc. 13th Int. Symp. Graph Drawing (GD 2005), 3843 edition, pp. 177--188. Springer-Verlag, Lecture Notes in Computer Science, 2006, doi:10.1007/11618058_17, http://algo.inria.fr/fusy/Articles/FusyGraphDrawing.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. É. Fusy. Transversal structures on triangulations: A combinatorial study and straight-line drawings. Discrete Mathematics 309(7):1870--1894, 2009, doi:10.1016/j.disc.2007.12.093, arXiv:math/0602163.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. B. Grünbaum. Convex Polytopes. Graduate Texts in Mathematics. Springer-Verlag, Berlin, Heidelberg, and New York, 2nd edition, 2003.Google ScholarGoogle Scholar
  38. C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. Proc. 8th Int. Symp. Graph Drawing (GD 2000), 1984 edition, pp. 77--90. Springer-Verlag, Lecture Notes in Computer Science, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. P. J. Heawood. On the four-colour map theorem. Quarterly J. Pure Appl. Math. 29:270--285, 1898.Google ScholarGoogle Scholar
  40. C. D. Hodgson, I. Rivin, and W. D. Smith. A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere. Bull. Amer. Math. Soc. 27:246--251, 1992, doi:10.1090/S0273-0979-1992-00303-8.Google ScholarGoogle ScholarCross RefCross Ref
  41. S.-H. Hong and H. Nagamochi. Extending Steinitz' Theorem to Non-convex Polyhedra. Tech. Rep. 2008-012, Department of Applied Mathematics & Physics, Kyoto University, 2008, http://www.amp.i.kyoto-u.ac.jp/tecrep/abst/2008/2008-012.html.Google ScholarGoogle Scholar
  42. J. Hopcroft and R. Tarjan. Dividing a graph into triconnected components. SIAM J. Comput. 2(3):135--158, 1973, doi:10.1137/0202012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. Hopcroft and R. Tarjan. Efficient Planarity Testing. J. ACM 21(4):549--568, 1974, doi:10.1145/321850.321852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. D. A. Huffman. Impossible objects as nonsense sentences. Machine Intelligence 6, pp. 295--323. Edinburgh University Press, 1971.Google ScholarGoogle Scholar
  45. G. Kant. Hexagonal grid drawings. Proc. Int. Worksh. Graph-Theoretic Concepts in Computer Science, 657 edition, pp. 263--276. Springer-Verlag, Lecture Notes in Computer Science, 1993, doi:10.1007/3-540-56402-0_53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science 172(1-2):175--193, 1997, doi:10.1016/S0304-3975(95)00257-X. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. B. Keszegh, J. Pach, D. Pálvölgyi, and G. Tóth. Drawing cubic graphs with at most five slopes. Computational Geometry Theory & Applications 40(2):138--147, 2008, doi:10.1016/j.comgeo.2007.05.003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. L. M. Kirousis and C. H. Papadimitriou. The complexity of recognizing polyhedral scenes. Journal of Computer and System Sciences 37(1):14--38, 1988, doi:10.1016/0022-0000(88)90043-8, http://lca.ceid.upatras.gr/~kirousis/publications/j29.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. K. Kozminski and E. Kinnen. Rectangular duals of planar graphs. Networks 5(2):145--157, 1985, doi:10.1002/net.3230150202.Google ScholarGoogle ScholarCross RefCross Ref
  50. M. Löffler and E. Mumford. Connected rectilinear graphs on point sets. Proc. 16th Int. Symp. Graph Drawing (GD 2008), 5417 edition, pp. 313--318. Springer-Verlag, Lecture Notes in Computer Science, 2008, doi:10.1007/978-3-642-00219-9_30, http://www.cs.uu.nl/research/techreps/repo/CS-2008/2008-028.pdf.Google ScholarGoogle Scholar
  51. S. Mac Lane. A structural characterization of planar combinatorial graphs. Duke Math. J. 3(3):460--472, 1937, doi:10.1215/S0012-7094-37-00336-3.Google ScholarGoogle ScholarCross RefCross Ref
  52. P. Mukkamala and M. Szegedy. Geometric representation of cubic graphs with four directions. Computational Geometry Theory & Applications 42(9):842--851, 2009, doi:10.1016/j.comgeo.2009.01.005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. J. Pach and D. Pálvölgyi. Bounded degree graphs can have arbitrarily large slope numbers. Electronic Journal of Combinatorics 13(1), 2006, http://www.combinatorics.org/Volume_13/PDF/v13i1n1.pdf.Google ScholarGoogle ScholarCross RefCross Ref
  54. M. S. Rahman, T. Nishizeki, and M. Naznin. Orthogonal drawings of plane graphs without bends. J. Graph Algorithms & Applications 7(4):335--362, 2003, http://jgaa.info/accepted/2003/Rahman+2003.7.4.pdf.Google ScholarGoogle ScholarCross RefCross Ref
  55. E. Raisz. The rectangular statistical cartogram. Geographical Review 24(2):292--296, 1934, doi:10.2307/208794.Google ScholarGoogle ScholarCross RefCross Ref
  56. I. Rinsma. Rectangular and orthogonal floorplans with required rooms areas and tree adjacency. Environment and Planning B: Planning and Design 15:111--118, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  57. I. Rivin. A characterization of ideal polyhedra in hyperbolic 3-space. Annals of Mathematics 143(1):51--70, 1996, doi:10.2307/2118652.Google ScholarGoogle ScholarCross RefCross Ref
  58. W. Schnyder. Embedding planar graphs on the grid. Proc. 1st ACM-SIAM Symp. Discrete Algorithms, pp. 138--148, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. E. Steinitz. Polyeder und Raumeinteilungen. Encyclopadie der mathematischen Wissenschaften, Band 3 (Geometries), pp. 1--139, 1922.Google ScholarGoogle Scholar
  60. R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3):421--444, 1987, doi:10.1137/0216030. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. W. P. Thurston. Conway's tiling groups. Amer. Mathematical Monthly 97(8):757--773, 1990, doi:10.2307/2324578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. D. Waltz. Understanding line drawings of scenes with shadows. The Psychology of Computer Vision, pp. 19--91. McGraw-Hill, 1975.Google ScholarGoogle Scholar
  63. D. R. Wood. Lower bounds for the number of bends in three-dimensional orthogonal graph drawings. J. Graph Algorithms & Applications 7(1):33--77, 2003, http://jgaa.info/accepted/2003/Wood2003.7.1.pdf.Google ScholarGoogle ScholarCross RefCross Ref
  64. D. R. Wood. Optimal three-dimensional orthogonal graph drawing in the general position model. Theoretical Computer Science 299(1-3):151--178, 2003, doi:10.1016/S0304-3975(02)00044-0, http://www.ms.unimelb.edu.au/~woodd/papers/Wood-TCS03.pdf.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. G. K. H. Yeap and M. Sarrafzadeh. Sliceable floorplanning by graph dualization. SIAM Journal of Discrete Mathematics 8(2):258--280, 1995, doi:10.1137/S0895480191266700. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer-Verlag, Berlin, Heidelberg, and New York, 152 edition, 1995.Google ScholarGoogle Scholar

Index Terms

  1. Steinitz theorems for orthogonal polyhedra

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SoCG '10: Proceedings of the twenty-sixth annual symposium on Computational geometry
        June 2010
        452 pages
        ISBN:9781450300162
        DOI:10.1145/1810959

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 June 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate625of1,685submissions,37%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader