skip to main content
10.1145/1730804.1730827acmconferencesArticle/Chapter ViewAbstractPublication Pagesi3dConference Proceedingsconference-collections
research-article

Radiance Scaling for versatile surface enhancement

Published:19 February 2010Publication History

ABSTRACT

We present a novel technique called Radiance Scaling for the depiction of surface shape through shading. It adjusts reflected light intensities in a way dependent on both surface curvature and material characteristics. As a result, diffuse shading or highlight variations become correlated to surface feature variations, enhancing surface concavities and convexities. This approach is more versatile compared to previous methods. First, it produces satisfying results with any kind of material: we demonstrate results obtained with Phong and Ashikmin BRDFs, Cartoon shading, sub-Lambertian materials, and perfectly reflective or refractive objects. Second, it imposes no restriction on lighting environment: it does not require a dense sampling of lighting directions and works even with a single light. Third, it makes it possible to enhance surface shape through the use of precomputed radiance data such as Ambient Occlusion, Prefiltered Environment Maps or Lit Spheres. Our novel approach works in real-time on modern graphics hardware.

References

  1. Adato, Y., Vasilyev, Y., Ben Shahar, O., and Zickler, T. 2007. Toward a theory of shape from specular flow. In ICCV07, 1--8.Google ScholarGoogle Scholar
  2. Adelson, E. H. 2001. On seeing stuff: the perception of materials by humans and machines. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, B. E. Rogowitz and T. N. Pappas, Eds., vol. 4299 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, 1--12.Google ScholarGoogle Scholar
  3. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In Proc. ACM SIGGRAPH '00, ACM, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bruckner, S., and Gröller, M. E. 2007. Style transfer functions for illustrative volume rendering. Computer Graphics Forum 26, 3 (Sept.), 715--724.Google ScholarGoogle ScholarCross RefCross Ref
  5. Caniard, F., and Fleming, R. W. 2007. Distortion in 3D shape estimation with changes in illumination. In APGV '07: Proc. symposium on Applied perception in graphics and visualization, ACM, 99--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cignoni, P., Scopigno, R., and Tarini, M. 2005. A simple Normal Enhancement technique for Interactive Non-photorealistic Renderings. Comp. & Graph. 29, 1, 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cipriano, G., Jr., G. N. P., and Gleicher, M. 2009. Multi-scale surface descriptors. IEEE Trans. Vis. Comput. Graph. 15, 6, 1201--1208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., and Santella, A. 2003. Suggestive Contours for Conveying Shape. ACM Trans. Graph. (Proc. SIGGRAPH 2003) 22, 3, 848--855. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fleming, R. W., Torralba, A., and Adelson, E. H. 2004. Specular reflections and the perception of shape. J. Vis. 4, 9 (9), 798--820.Google ScholarGoogle ScholarCross RefCross Ref
  10. Goodwin, T., Vollick, I., and Hertzmann, A. 2007. Isophote distance: a shading approach to artistic stroke thickness. In NPAR '07: Proc. international symposium on Non-photorealistic animation and rendering, ACM, 53--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ho, Y.-X., Landy, M. S., and Maloney, L. T. 2006. How direction of illumination affects visually perceived surface roughness. J. Vis. 6, 5 (5), 634--648.Google ScholarGoogle ScholarCross RefCross Ref
  12. Judd, T., Durand, F., and Adelson, E. H. 2007. Apparent Ridges for Line Drawing. ACM Trans. Graph. (Proc. SIGGRAPH 2007) 26, 3, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kautz, J., Vázquez, P.-P., Heidrich, W., and Seidel, H.-P. 2000. Unified Approach to Prefiltered Environment Maps. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, Springer-Verlag, 185--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kindlmann, G., Whitaker, R., Tasdizen, T., and Möller, T. 2003. Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications. In Proc. IEEE Visualization 2003, 513--520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Koenderink J. J., D. A. v. 2003. The visual neurosciences. MIT Press, Cambridge, ch. Shape and shading, 1090--1105.Google ScholarGoogle Scholar
  16. Kolomenkin, M., Shimshoni, I., and Tal, A. 2008. Demarcating Curves for Shape Illustration. ACM Trans. Graph. (Proc. SIGGRAPH Asia 2008) 27, 5, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lee, Y., Markosian, L., Lee, S., and Hughes, J. F. 2007. Line drawings via abstracted shading. ACM Trans. Graph. 26, 3, 18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Malzbender, T., Gelb, D., and Wolters, H. 2001. Polynomial texture maps. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Miller, G. 1994. Efficient Algorithms for Local and Global Accessibility Shading. In Proc. ACM SIGGRAPH '94, ACM, 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nienhaus, M., and Döllner, J. 2004. Blueprints: illustrating architecture and technical parts using hardware-accelerated non-photorealistic rendering. In Graphics Interface (GI'04), Canadian Human-Computer Communications Society, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ohtake, Y., Belyaev, A., and Seidel, H.-P. 2004. Ridge-valley lines on meshes via implicit surface fitting. ACM Trans. Graph. (Proc. SIGGRAPH 2004) 3, 23, 609--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. O'Shea, J. P., Banks, M. S., and Agrawala, M. 2008. The assumed light direction for perceiving shape from shading. In APGV '08: Proc. symposium on Applied perception in graphics and visualization, ACM, 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pharr, M., and Green, S. 2004. GPU Gems. Addison-Wesley, ch. Ambient Occlusion.Google ScholarGoogle Scholar
  24. Pont S. C., K. J. 2003. Computer Analysis of Images and Patterns. Springer, Berlin, ch. Illuminance flow, 90--97.Google ScholarGoogle Scholar
  25. Ritschel, T., Smith, K., Ihrke, M., Grosch, T., Myszkowski, K., and Seidel, H.-P. 2008. 3D Unsharp Masking for Scene Coherent Enhancement. ACM Trans. Graph. (Proc. SIGGRAPH 2008) 27, 3, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rusinkiewicz, S., Burns, M., and DeCarlo, D. 2006. Exaggerated Shading for Depicting Shape and Detail. ACM Trans. Graph. (Proc. SIGGRAPH 2006) 25, 3, 1199--1205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Saito, T., and Takahashi, T. 1990. Comprehensible Rendering of 3-D Shapes. In Proc. ACM SIGGRAPH '90, ACM, 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sloan, P.-P. J., Martin, W., Gooch, A., and Gooch, B. 2001. The lit sphere: A model for capturing NPR shading from art. In Graphics interface 2001, Canadian Information Processing Society, 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Vangorp, P., Laurijssen, J., and Dutré, P. 2007. The influence of shape on the perception of material reflectance. ACM Trans. Graph. (Proc. SIGGRAPH 2007) 26, 3, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Vergne, R., Barla, P., Granier, X., and Schlick, C. 2008. Apparent relief: a shape descriptor for stylized shading. In NPAR '08: Proc. international symposium on Non-photorealistic animation and rendering, ACM, 23--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Vergne, R., Pacanowski, R., Barla, P., Granier, X., and Schlick, C. 2009. Light warping for enhanced surface depiction. ACM Transaction on Graphics (Proceedings of SIGGRAPH 2009) (Aug). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhang, L., He, Y., Xie, X., and Chen, W. 2009. Laplacian Lines for Real Time Shape Illustration. In I3D '09: Proc. symposium on Interactive 3D graphics and games, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    I3D '10: Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games
    February 2010
    201 pages
    ISBN:9781605589398
    DOI:10.1145/1730804

    Copyright © 2010 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 19 February 2010

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate148of485submissions,31%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader