skip to main content
article
Free Access

The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms

Published:01 June 1993Publication History
Skip Abstract Section

Abstract

Robust software with error bounds for computing the generalized Schur decomposition of an arbitrary matrix pencil A – λB (regular or singular) is presented. The decomposition is a generalization of the Schur canonical form of A – λI to matrix pencils and reveals the Kronecker structure of a singular pencil. Since computing the Kronecker structure of a singular pencil is a potentially ill-posed problem, it is important to be able to compute rigorous and reliable error bounds for the computed features. The error bounds rely on perturbation theory for reducing subspaces and generalized eigenvalues of singular matrix pencils. The first part of this two-part paper presents the theory and algorithms for the decomposition and its error bounds, while the second part describes the computed generalized Schur decomposition and the software, and presents applications and an example of its use.

References

  1. 1 BEELEN, T., AND VAN DOOREN, P. An improved algorithm for the computation of Kronecker's canomcal form of a singular pencil. Lin. Alg Appl. 105 (1988), 9-65.Google ScholarGoogle Scholar
  2. 2 BEELEN, T., VAN DOOREN, P., AND VERHAEGEN, M. A class of staircase algorithms for generalized state space systems. In Proceedings of the American Control Conference (Seattle, Wash., 1986), 425-426.Google ScholarGoogle Scholar
  3. 3 BOLEY, D. Computing the controllability/observability decomposition of a linear time-invariant dynamic system: a numerical approach. Ph.D. Thesis, Computer Science Dept., Stanford Univ., 1981. Google ScholarGoogle Scholar
  4. 4 BOLE~, D., AND GOLUB, G. The Lanczos-Arnoldi algorithm and controllability. Syst. Control Lett. 4 (1984), 317 324.Google ScholarGoogle Scholar
  5. 5 CHAN, T. Rank revealing QR factorizations. Lin. Alg. Appl. 88/89 (1987), 67-82.Google ScholarGoogle Scholar
  6. 6 CHu, K.E. Exclusion theorems and the perturbation analysis of the generalized eigenproblem. Mathematics Dept. Numerical Analysis Rep. NA/11/85, Univ. of Reading, Reading, England, 1985.Google ScholarGoogle Scholar
  7. 7 DEMMEL, J., AND KA~GSTROM, B. Stable eigendecompositions of matrix pencils A - AB. Rep. UMINF-118.84, Inst. of Information Processing, Univ. of Ume~, S-901 87 Ume~, Sweden, 1984.Google ScholarGoogle Scholar
  8. 8 DEMMEL, J., AND KA~STROM, B. Stably computing the Kronecker structure and reducing subspaces of singular pencils A AB for uncertain data. In Large Scale Etgenvalue Problems, J. Cullum and R. A. Willoughby, Eds., North-Holland, Amsterdam, 1986, 283-323. Mathematics Studies Series Vol. 127.Google ScholarGoogle Scholar
  9. 9 DEMMEL, J., ANn KA~$TROM, B. Computing stable eigendecompositions of matrix pencils. Lin. Alg. Appl. 88/89 (Apr. 1987), 139-186.Google ScholarGoogle Scholar
  10. 10 DEMMEL, J., AND KA~STRdM, B. Accurate solutions of ill-posed problems in control theory. SIAM J. Moth. Anal. Appl. 9, I (Jan. 1988), 126-145. Google ScholarGoogle Scholar
  11. 11 DEMMEL, J., AND KA~CSTRdM, B. The generalized Schur decomposition of an arbitrary penml A - )tB: robust software with error bounds and applications. Part II: Software and Applications. ACM Trans. Math. Softw. 19, 2 (June 1993), 175 201. Google ScholarGoogle Scholar
  12. 12 DONGARRA, J., AND GROSSE, E. Distribution of mathematical software via electronic mail Commun. ACM 30, 5 (July 1987), 403-407. Google ScholarGoogle Scholar
  13. 13 GANTMACHER, F. The Theory of Matrices, Vol. H (transl.). Chelsea, New York, 1959.Google ScholarGoogle Scholar
  14. 14 GARBOW, B. S., BOYLE, J. M., DONGARRA, J. J., AND MOLER, C. B. Matrix Etgensystem Routines EISPACK Guide Extension. Lecture Notes zn Computer Science, Vol. 51 Springer- Verlag, Berlin, 1977.Google ScholarGoogle Scholar
  15. 15 GOLUB, G., AND WILKINSON, J.H. Ill-conditioned eigensystems and the computation of the Jordan canonical form. SIAM Rev. 18, 4 (1976), 578 619.Google ScholarGoogle Scholar
  16. 16 HAMMARLINO, S., KENWARD, P., SYMM, H., AND WILYdNSON, J.H. Subroutine UKGE3R/D in the LASLIB library. Manuscript, 1981.Google ScholarGoogle Scholar
  17. 17 KA~sTI~OM, B. On computing the Kronecker canonical form of regular A - ^B pencils. In Matrix Pencils, Lecture Notes in Mathematics, Vol. 973, B. K~gstrdm and A. Ruhe, Eds., Springer-Verlag, Berlin, 1983, 30-57.Google ScholarGoogle Scholar
  18. 18 KA~STR(SM, B. The generalized singular value decomposition and the general A - AB problem. BIT 24 (1984), 568 583.Google ScholarGoogle Scholar
  19. 19 KA~:STRCiM, B. RGSVD--an algorithm for computing the Kronecker canonical form and reducing subspaces of singular matrix pencils A - AB. SIAM J. Sci. Star. Comput. 7, 1 (1986), 185-211. Google ScholarGoogle Scholar
  20. 20 KA%STRdM, B., AND RU~E, A. ALGORITHM 560: An algorithm for the numerical computation of the Jordan normal form of a complex matrix {F2}. ACM Trans. Math. Softw. 6, 3 (1980), 437 443. Google ScholarGoogle Scholar
  21. 21 KA~GSTROM, B., AND RUHE, A. An algorithm for the numerica} computation of the Jordan normal form of a complex matrix. ACM Trans. Math. Softw. 6, 3 (1980), 389-419. Google ScholarGoogle Scholar
  22. 22 KRONECKER, L. Algebraische Reduction der Schaaren Bilinearer Formen. S. B. Akad., 1890, 763-776.Google ScholarGoogle Scholar
  23. 23 KUBLANOVSKAYA, V. On a method of solving the complete eigenvalue problem of a degenerate matrix. USSR Comput. Math. Math. Phys. 6 (1968), i 14.Google ScholarGoogle Scholar
  24. 24 KUBLXr4OV~~&, V. An approach to solving the spectral problem of A AB. In Matrzx Pencils, Lecture Notes in Mathematics, Vol. 973, B. K~gstr6in and A. Ruhe, Eds., Springer- Verlag, Berlin, 1983, 17-29.Google ScholarGoogle Scholar
  25. 25 KUmJANOVSt~~A, V. AB-algorithm and its modifications for the spectral problem of linear pencils of matrices. Numer. Math. 43 (1984), 329-342.Google ScholarGoogle Scholar
  26. 26 KUBLANOVSKAYA, V, AND CHAZANOV, V g. Spectral problems for matrix pencils, methods and algorithms, part I (in Russian). Preprint LOMIP-2-88, USSR Academy of Sciences, Leningrad, 1988.Google ScholarGoogle Scholar
  27. 27 PAINE, C. Properties of numerical algorithms related to computing controllability IEEE Trans. Auto. Cntr. AC-26, I (1981), 130-138Google ScholarGoogle Scholar
  28. 28 PAIGE, C., AND SAUNDERS, M. Towards a generahzed singular value decomposition. SIAM J. Numer. Anal. 15 (1981), 241-256.Google ScholarGoogle Scholar
  29. 29 POKRZYWA, A. On perturbations and the equivalence orbit of a matrix pencil Lzn. Alg Appl. 82 (1986), 99 121.Google ScholarGoogle Scholar
  30. 30 SMITH, B. T., BOYLE, J. M., DONO^RRA, J. J., G^RBOW, B. S., I~BE, Y., KLEMA, V. C., AND MOLER, C B. Matrtx Eigensystem Rouhnes EISPACK Outde. Lecture Notes tn Computer Sczence, Springer-Verlag, Berlin, 1976.Google ScholarGoogle Scholar
  31. 31 STEWART, G.W. On the sensitivity of the eigenvalue problem A_r = ABx. SIAM J. Numer Anal. 9, 4 (1972), 669 686.Google ScholarGoogle Scholar
  32. 32 STEWART, G. W. Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15, 4 (Oct. 1973), 727-764Google ScholarGoogle Scholar
  33. 33 STEWART, G. W Gershgorin theory tbr the generalized eigenproblem Ax = ABx. Math. Comput 29, 130 (1975), 600 606.Google ScholarGoogle Scholar
  34. 34 SUN, J. G Orthogonal projections and the perturbation of the eigenvalues of singular pencils. J. Comput. Math. (China) i (1983), 63 74.Google ScholarGoogle Scholar
  35. 35 SUN, J G. Perturbation analysis for the generalized eigenvalue and generalized singular value problem. In Mutrzx Pencils, Lecture Notes zn Mathematzcs, Vol. 973, B. Kdgstroin and A. Ruhe, Eds., Springer-Verlag, Berlin, 1983, 221 244Google ScholarGoogle Scholar
  36. 36 SUN, J.G. Gershgorin type theorem and the perturbations of the eigenvalues of a singular pencil. Chmese J. Numer Math. Appl. 10, I (1988), 1-13.Google ScholarGoogle Scholar
  37. 37 VAN DOOREN, P. The computation of Kronecker's canonical form of a singular pencil LzT~. Alg. Appl. 27 (1979), 103 141.Google ScholarGoogle Scholar
  38. 38 VAN DOOREN, P The generalized eigenstructure problem in linear system theory. IEEE Trans. Aut. Cntr. AC-26 (1981), 111-128.Google ScholarGoogle Scholar
  39. 39 VAN DOOREN, P. Reducing subspaces: Computational aspects and apphcations in linear systems theory. In Procee&ngs of the 5th International Conference on Analysts and Optzrntzation of Systems (1982), Lecture Notes on Control and Informatzon Sczences, Vol. 44, Springer-Verlag, 1983.Google ScholarGoogle Scholar
  40. 40 VAN DOOREN, P. Reducing subspaces: Definitions, properties and algorithms. In Matrzx Pencils, Lecture Notes in Mathemattcs, Vol. 973, B. Kdgstrom and A. Ruhe, Eds. Springer- Verlag, Berlin, 1983, 58-73.Google ScholarGoogle Scholar
  41. 41 VAN LOAN, C. Computing the CS and the generalized singular value decompositions. Numer. Math , 46, 4 (1985), 76-83.Google ScholarGoogle Scholar
  42. 42 WATERHOUSE, W. The codimension of singular matrix pairs. Ltn. Alg. Appl. 57 1984, 227 245.Google ScholarGoogle Scholar
  43. 43 WILKiNSON, J H. Linear differential equations and Kronecker's canonical form. In Recent Advances in Numerical Analysis, C de Boor and G. Golub, Eds. Academic Press, 1978, 231-265.Google ScholarGoogle Scholar
  44. 44 WILKINSON, J. H. Kronecker's canonical form and the QZ algorithm. Lm. Alg. Appl. 28 (1979), 285 303Google ScholarGoogle Scholar
  45. 45 WONHAM, M. Linear Multivartable Control Theory: A Geometrtc Approach, 2nd Ed. Springer-Verlag, New York, 1979.Google ScholarGoogle Scholar

Index Terms

  1. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms

            Recommendations

            Reviews

            James Martin Varah

            The authors present algorithms for computing the generalized Schur decomposition of an arbitrary matrix pencil A- l B , as a useful stable alternative to the Kronecker canonical form. The key element is the unitary reduction to GUPTRI (generalized upper triangular) form. Using perturbation results for reducing subspaces and generalized eigenvalues, they also compute error bounds for these computed quantities. Part 1 discusses the algorithms used, and Part 2 gives the details of the software implementation and some special cases . The authors also mention the application of this software to problems in control theory, and make a comparison with the work of van Dooren in this context.

            Access critical reviews of Computing literature here

            Become a reviewer for Computing Reviews.

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader