skip to main content
10.1145/1518701.1518749acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Providing dynamically changeable physical buttons on a visual display

Published:04 April 2009Publication History

ABSTRACT

Physical buttons have the unique ability to provide low-attention and vision-free interactions through their intuitive tactile clues. Unfortunately, the physicality of these interfaces makes them static, limiting the number and types of user interfaces they can support. On the other hand, touch screen technologies provide the ultimate interface flexibility, but offer no inherent tactile qualities. In this paper, we describe a technique that seeks to occupy the space between these two extremes - offering some of the flexibility of touch screens, while retaining the beneficial tactile properties of physical interfaces.

The outcome of our investigations is a visual display that contains deformable areas, able to produce physical buttons and other interface elements. These tactile features can be dynamically brought into and out of the interface, and otherwise manipulated under program control. The surfaces we describe provide the full dynamics of a visual display (through rear projection) as well as allowing for multitouch input (though an infrared lighting and camera setup behind the display). To illustrate the tactile capabilities of the surfaces, we describe a number of variations we uncovered in our exploration and prototyping. These go beyond simple on/off actuation and can be combined to provide a range of different possible tactile expressions. A preliminary user study indicates that our dynamic buttons perform much like physical buttons in tactile search tasks.

References

  1. Bah, K., Jæger, M., Skov, M. B., and Thomassen, N. You can touch, but you can't look: interacting with in-vehicle systems. In Proc. CHI '08. ACM Press (2008), 1139--1148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Benali-Khoudja, M., Hafez, M., Alexandre, J. M., Kheddar, A. Tactile Interfaces: A State of the Art Survey. In Proc. ISR '04. 721--726.Google ScholarGoogle Scholar
  3. Benko, H., Wilson, A. D., Balakrishnan, R. Sphere: multi-touch interactions on a spherical display. In Proc. UIST '08. ACM Press (2008), 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brewster, S. and Brown, L. M. Tactons: structured tactile messages for non-visual information display. In Proc. AUIC '04. Australian Computer Society (2004), 15--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Coelho, M. and Maes, P. Sprout I/O: a texturally rich interface. In Proc. TEI '08. ACM Press (2008), 221--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Coelho, M., Ishii, H., and Maes, P. Surflex: a programmable surface for the design of tangible interfaces. In CHI '08 Ext. Abst. ACM Press (2008), 3429--3434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dietz, P. and Leigh, D. DiamondTouch: a multi-user touch technology. In Proc. UIST '01. ACM Press (2001), 219--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Enriquez, M., Afonin, O., Yager, B., and Maclean, K. 2001. A pneumatic tactile alerting system for the driving environment. In Proc. PUI '01. ACM Press (2001), 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fukumoto, M. and Sugimura, T. Active click: tactile feedback for touch panels. In CHI '01 Ext. Abst. ACM Press (2001),121--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Han, J. Y. Low-Cost Multi-Touch Sensing through Frustrated Total Internal Reflection. In Proc. UIST '05. ACM Press (2005), 115--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hashimoto, Y. and Kajimoto, H. A novel interface to present emotional tactile sensation to a palm using air pressure. In CHI '08 Ext. Abst. ACM Press (2008), 2703--2708. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. Project FEELEX: adding haptic surface to graphics. In Proc. SIGGRAPH '01. ACM Press (2001), 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kim, S., Kim, H., Lee, B., Nam, T., and Lee, W. Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback. In Proc. CHI '08. ACM Press (2008), 211--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kodama, S. and M. Takeno. Protrude, Flow. (Electronic Arts and Animation Catalogue) In Proc. SIGGRAPH '01. ACM Press (2001), 138.Google ScholarGoogle Scholar
  15. Laitinen, P. Tactile Touch Screen. International Application PCT/EP2006/009377, filed 27 September 2006.Google ScholarGoogle Scholar
  16. Lee, J. C., Dietz, P. H., Leigh, D., Yerazunis, W. S., and Hudson, S. E. Haptic pen: a tactile feedback stylus for touch screens. In Proc. UIST '04. ACM Press (2004), 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Li, K.A. Baudisch, P., Griswold, W.G., Hollan, J.D. Tapping and rubbing: exploring new dimensions of tactile feedback with voice coil motors. In Proc. UIST '08. ACM Press (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Matsushita, N. and Rekimoto, J. HoloWall: designing a finger, hand, body, and object sensitive wall. In Proc. UIST '97. ACM Press (1997), 209--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Microsoft surface. http://www.microsoft.com/surface/Google ScholarGoogle Scholar
  20. Nakatani, M., Kajimoto, H., Kawakami, N., and Tachi, S. Tactile sensation with high-density pin-matrix. In Proc. APGV '05. ACM Press (2005), 169--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nashel, A. and Razzaque, S. Tactile virtual buttons for mobile devices. In CHI '03 Ext. Abst. ACM press (2003), 854--855. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Otsuka, K. and Wayman, C. M. Eds. Shape Memory Materials. Cambridge University Press, New York, 1999.Google ScholarGoogle Scholar
  23. Overholt, D., Pasztor, E., Mazalek, A. A Multipurpose Array of Tactile Rods for Interactive sXpression (Abstracts and Applications), In Proc. SIGGRAPH '01. ACM Press (2001).Google ScholarGoogle Scholar
  24. Poupyrev, I. Maruyama, S, and Rekimoto, J. Ambient touch: designing tactile interfaces for handheld devices. In Proc. UIST '02. ACM Press (2002), 51--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. Lumen: interactive visual and shape display for calm computing (Emerging Technologies). In Proc. SIGGRAPH '04. ACM Press (2004), 17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Poupyrev, I., Nashida, T., and Okabe, M. Actuation and tangible user interfaces: the Vaucanson duck, robots, and shape displays. In Proc. TEI '07. ACM Press (2007), 205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ramos, G., Boulos, M., and Balakrishnan, R. Pressure widgets. In Proc. CHI '04. ACM Press, 487--494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rekimoto, J. and Schwesig, C. PreSenseII: bi-directional touch and pressure sensing interactions with tactile feedback. In CHI '06 Ext. Abst. ACM Press (2006), 1253--1258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rockwell, T.H. Spare Visual Capacity in Driving Revisited: New Empirical Results of an Old Idea, in Vision min Vehicles II. Elsevier (1988), 317-324.Google ScholarGoogle Scholar
  30. Wagner, C. R, Lederman, S. J., Howe, R.D. A Tactile Shape Display Using RC Servomotors. Electronic Journal of Haptics Research, 3, 4.Google ScholarGoogle Scholar
  31. Wickens, C.D. and Hollands, J.G. Engineering Psychology and Human Performance. Prentice Hall, 2000.Google ScholarGoogle Scholar

Index Terms

  1. Providing dynamically changeable physical buttons on a visual display

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '09: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2009
      2426 pages
      ISBN:9781605582467
      DOI:10.1145/1518701

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 April 2009

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '09 Paper Acceptance Rate277of1,130submissions,25%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader