skip to main content
10.1145/1399504.1360666acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Edge-preserving decompositions for multi-scale tone and detail manipulation

Published:01 August 2008Publication History

ABSTRACT

Many recent computational photography techniques decompose an image into a piecewise smooth base layer, containing large scale variations in intensity, and a residual detail layer capturing the smaller scale details in the image. In many of these applications, it is important to control the spatial scale of the extracted details, and it is often desirable to manipulate details at multiple scales, while avoiding visual artifacts.

In this paper we introduce a new way to construct edge-preserving multi-scale image decompositions. We show that current basedetail decomposition techniques, based on the bilateral filter, are limited in their ability to extract detail at arbitrary scales. Instead, we advocate the use of an alternative edge-preserving smoothing operator, based on the weighted least squares optimization framework, which is particularly well suited for progressive coarsening of images and for multi-scale detail extraction. After describing this operator, we show how to use it to construct edge-preserving multi-scale decompositions, and compare it to the bilateral filter, as well as to other schemes. Finally, we demonstrate the effectiveness of our edge-preserving decompositions in the context of LDR and HDR tone mapping, detail enhancement, and other applications.

Skip Supplemental Material Section

Supplemental Material

a67-farbman.mov

mov

21.8 MB

References

  1. Alvarez, L., Lions, P.-L., and Morel, J.-M. 1992. Image selective smoothing and edge detection by nonlinear diffusion. ii. SIAM Journal on Numerical Analysis 29, 3 (June), 845--866. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aubert, G., and Kornprobst, P. 2006. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147 of Applied Mathematical Sciences. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bae, S., Paris, S., and Durand, F. 2006. Two-scale tone management for photographic look. ACM Trans. Graph. 25, 3 (July), 654--662. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barash, D. 2002. A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 6, 844--847. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Black, M. J., Sapiro, G., Marimont, D. H., and Heeger, D. 1998. Robust anisotropic diffusion. IEEE Trans. Image Proc. 7, 3 (Mar.), 421--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Buades, A., Coll, B., and Morel, J. M. 2006. The staircasing effect in neighborhood filters and its solution. IEEE Transactions on Image Processing 15, 6, 1499--1505. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buatois, L., Caumon, G., and Levy, B. 2007. Concurrent number cruncher: An efficient sparse linear solver on the GPU. In High Performance Computation Conference (HPCC), Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Burt, P., and Adelson, E. H. 1983. The Laplacian pyramid as a compact image code. IEEE Trans. Comm. 31, 532--540.Google ScholarGoogle ScholarCross RefCross Ref
  9. Chen, J., Paris, S., and Durand, F. 2007. Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. 26, 3 (July), Article 103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choudhury, P., and Tumblin, J. 2003. The trilateral filter for high contrast images and meshes. In Proc. EGSR 2003, Eurographics, 186--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Comaniciu, D., and Meer, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 5, 603--619. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. DeCarlo, D., and Santella, A. 2002. Stylization and abstraction of photographs. ACM Trans. Graph. 21, 3 (July), 769--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21, 3 (July), 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eisemann, E., and Durand, F. 2004. Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23, 3 (August), 673--678. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Elad, M. 2002. On the bilateral filter and ways to improve it. IEEE Trans. Image Proc. 11, 10, 1141--1151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Trans. Graph. 21, 3 (July), 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fattal, R., Agrawala, M., and Rusinkiewicz, S. 2007. Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. 26, 3 (July), Article 51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jobson, D. J., Rahman, Z., and Woodell, G. A. 1997. A multi-scale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Proc. 6, 7 (July), 965--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Khan, E. A., Reinhard, E., Fleming, R. W., and Bülthoff, H. H. 2006. Image-based material editing. ACM Trans. Graph. 25, 3 (July), 654--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lagendijk, R. L., Biemond, J., and Boekee, D. E. 1988. Regularized iterative image restoration with ringing reduction. IEEE Trans. Acoustics, Speech, and Signal Proc., Speech, Signal Proc. 36, 12 (December), 1874--1888.Google ScholarGoogle Scholar
  21. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Trans. Graph. 23, 3 (August), 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Levin, A., Fergus, R., Durand, F., and Freeman, W. T. 2007. Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26, 3 (July), Article 70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, Y., Sharan, L., and Adelson, E. H. 2005. Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. 24, 3 (July), 836--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. ACM Trans. Graph. 25, 3 (July), 646--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mantiuk, R., Myszkowski, K., and Seidel, H.-P. 2006. A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3, 3, 286--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mrázek, P., Weickert, J., and Bruhn, A. 2006. On robust estimation and smoothing with spatial and tonal kernels. In Geometric Properties from Incomplete Data, R. Klette, R. Kozera, L. Noakes, and J. Weickert, Eds. Springer, Dordrecht, 335--352.Google ScholarGoogle Scholar
  27. Nordstrom, K. N. 1989. Biased anisotropic diffusion --- a unified regularization and diffusion approach to edge detection. Tech. Rep. UCB/CSD-89-514, EECS Department, University of California, Berkeley, May. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Oh, B. M., Chen, M., Dorsey, J., and Durand, F. 2001. Image-based modeling and photo editing. In Proc. ACM SIGGRAPH 2001, ACM, E. Fiume, Ed., 433--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Oppenheim, A. V., and Schafer, R. W. 1989. Discrete-Time Signal Processing. Prentice Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Paris, S., and Durand, F. 2006. A fast approximation of the bilateral filter using a signal processing approach. In Proc. ECCV '06, IV: 568--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Paris, S. 2007. A gentle introduction to bilateral filtering and its applications. In ACM SIGGRAPH 2007 courses, Course 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. ACM SIGGRAPH 98, M. Cohen, Ed., 287--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Perona, P., and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12, 7 (July), 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama, K. 2004. Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23, 3 (August), 664--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2002. Photographic tone reproduction for digital images. ACM Trans. Graph. 21, 3 (July), 267--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, second ed. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Scales, J. A., and Gersztenkorn, A. 1988. Robust methods in inverse theory. Inverse Problems 4, 1071--1091.Google ScholarGoogle ScholarCross RefCross Ref
  38. Scherzer, O., and Weickert, J. 2000. Relations between regularization and diffusion filtering. Journal of Mathematical Imaging and Vision 12, 1 (February), 43--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Schlick, C. 1994. Quantization techniques for visualization of high dynamic range pictures. In Photorealistic Rendering Techniques, Springer-Verlag, P. Shirley, G. Sakas, and S. Müller, Eds., 7--20.Google ScholarGoogle Scholar
  40. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proc. ICCV '98, IEEE Computer Society, 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tumblin, J., and Turk, G. 1999. LCIS: A boundary hierarchy for detail-preserving contrast reduction. In Proc. ACM SIGGRAPH 99, A. Rockwood, Ed., ACM, 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Weiss, B. 2006. Fast median and bilateral filtering. ACM Trans. Graph. 25, 3 (July), 519--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Winnemöller, H., Olsen, S. C., and Gooch, B. 2006. Realtime video abstraction. ACM Trans. Graph. 25, 3 (July), 1221--1226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zervakis, M. E. 1990. Nonlinear image restoration techniques. PhD thesis, Univ. Toronto, Toronto, ON, Canada.Google ScholarGoogle Scholar

Index Terms

  1. Edge-preserving decompositions for multi-scale tone and detail manipulation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader