skip to main content
article

Unsupervised pattern mining from symbolic temporal data

Published:01 June 2007Publication History
Skip Abstract Section

Abstract

We present a unifying view of temporal concepts and data models in order to categorize existing approaches for unsupervised pattern mining from symbolic temporal data. In particular we distinguish time point-based methods and interval-based methods as well as univariate and multivariate methods. The mining paradigms and the robustness of many proposed approaches are compared to aid the selection of the appropriate method for a given problem. For time points, sequential pattern mining algorithms can be used to express equality and order of time points with gaps in multivariate data. For univariate data and limited gaps suffix tree methods are more efficient. Recently, efficient algorithms have been proposed to mine the more general concept of partial order from time points. For time interval data with precise start and end points the relations of Allen can be used to formulate patterns. The recently proposed Time Series Knowledge Representation is more robust on noisy data and offers an alternative semantic that avoids ambiguity and is more expressive. For both pattern languages efficient mining algorithms have been proposed.

References

  1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of data, pages 207--216. ACM Press, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. S. P. Chen, editors, Proceedings of the 11th International Conference on Data Engineering (ICDE'95), pages 3--14. IEEE Press, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Aiello, C. Monz, L. Todoran, and M. Worring. Document understanding for a broad class of documents. International Journal on Document Analysis and Recognition, 5(1):1--16, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832--843, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Apostolico, M. E. Bock, S. Lonardi, and X. Xu. Efficient detection of unusual words. Journal of Computational Biology, 7(1--2):71--94, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Apostolico, F. Gong, and S. Lonardi. Verbumculus and the discovery of unusual words. Journal of Computer Science and Technology, 19(1):22--41, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. W. G. Aref, M. G. Elfeky, and A. K. Elmagarmid. Incremental, online, and merge mining of partial periodic patterns in time-series databases. IEEE Transactions on Knowledge and Data Engineering, 16(3):332--342, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Aseervatham, A. Osmani, and E. Viennet. bitSPADE: A lattice-based sequential pattern mining algorithm using bitmap representation. In Proceedings of the 6th IEEE International Conference on Data Mining (ICDM'06), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap representation. In D. Hand, D. Keim, and R. Ng, editors, Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'02), pages 429--435. ACM Press, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for planning. Artificial Intelligence, 16(1--2):123--191, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Badaloni and M. Giacomin. A fuzzy extension of Allen's interval algebra. In E. Lamma and P. Mello, editors, AI*IA99: Advances in Artificial Intelligence, pages 155--165. Springer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Baixeries, G. Casas-Garriga, and J. L. Balcazar. Mining unbounded episodes from sequential data. Technical Report NC-TR-01-091, NeuroCOLT, Royal Holloway University of London, UK, 2001.Google ScholarGoogle Scholar
  13. R. J. Bayardo. Efficiently mining long patterns from databases. In A. Tiwary and M. Franklin, editors, Proceedings of the 17th ACM SIGMOD symposium on Principles of database systems (PODS'98), pages 85--93. ACM Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Berberidis, I. Vlahavas, W. G. Aref, M. Atallah, and A. K. Elmagarmid. On the discovery of weak periodicities in large time series. In T. Elomaa, H. Mannila, and H. Toivonen, editors, Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD'02), pages 51--61. Springer, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Bettini, X. Sean Wang, S. Jajodia, and J.-L. Lin. Discovering frequent event patterns with multiple granularities in time sequences. IEEE Transactions on Knowledge and Data Engineering, 10(2):222--237, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. H. Böhlen, R. Busatto, and C. S. Jensen. Point-versus interval-based temporal data models. In Proceedings of the 14th International Conference on Data Engineering (ICDE'98), pages 192--200. IEEE Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Calin and D. Galea. A fuzzy relation for comparing intervals. In B. Reusch, editor, Proceedings of the 7th Fuzzy Days on Computational Intelligence, Theory and Applications, pages 904--916. Springer, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Casas-Garriga. Discovering unbounded episodes in sequential data. In N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski, editors, Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'03), pages 83--94. Springer, 2003.Google ScholarGoogle Scholar
  19. G. Casas-Garriga. Summarizing sequential data with closed partial orders. In H. Kargupta, J. Srivastava, C. Kamath, and A. Goodman, editors, Proceedings of the 5th SIAM International Conference on Data Mining (SDM'05), pages 380--391. SIAM, 2005.Google ScholarGoogle Scholar
  20. G. Chen, X. Wu, and X. Zhu. Mining sequential patterns across data streams. Technical Report CS-05-04, University of Vermont, Burlington, VT, USA, 2005.Google ScholarGoogle Scholar
  21. H. Cheng, X. Yan, and J. Han. SeqIndex: Indexing sequences by sequential pattern analysis. In H. Kargupta, J. Srivastava, C. Kamath, and A. Goodman, editors, Proceedings of the 5th SIAM International Conference on Data Mining (SDM'05), pages 84--93. SIAM, 2005.Google ScholarGoogle Scholar
  22. P. R. Cohen. Fluent learning: Elucidating the structure of episodes. In F. Hoffmann, D. Hand, N. Adams, D. Fisher, and G. Guimarães, editors, Proceedings of the 4th International Conference in Intelligent Data Analysis (IDA'01), pages 268--277. Springer, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. P. R. Cohen, C. Sutton, and B. Burns. Learning effects of robot actions using temporal associations. In Proceedings of the 2nd International Conference on Development and Learning, pages 96--101. IEEE Press, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. Cotofrei and K. Stoffel. Rule extraction from time series databases using classification trees. In Proceedings of the 20th IASTED Conference on Applied Informatics, pages 327--332. ACTA Press, 2002.Google ScholarGoogle Scholar
  25. P. Cotofrei and K. Stoffel. First-order logic based formalism for temporal data mining. In T. Lin, S. Ohsuga, C.-J. Liau, X. Hu, and S. Tsumoto, editors, Foundations of Data Mining and Knowledge Discovery, pages 193--218. Springer, 2005.Google ScholarGoogle Scholar
  26. G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery from time series. In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD'98), pages 16--22. AAAI Press, 1998.Google ScholarGoogle Scholar
  27. C. S. Daw, C. E. A. Finney, and E. R. Tracy. A review of symbolic analysis of experimental data. Review of Scientific Instruments, 74(2):916--930, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  28. D. DuBois and H. Prade. Processing fuzzy temporal knowledge. IEEE Transactions on Systems, Man and Cybernetics, 19(4):729--744, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Dugarjapov and G. Lausen. Mining sets of time series: Description of time points. In M. Schwaiger and O. Opitz, editors, Proceedings of the 25th Annual Conference of the German Classification Society (GfKl'01), pages 41--49. Springer, 2002.Google ScholarGoogle Scholar
  30. M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Using convolution to mine obscure periodic patterns in one pass. In E. Bertino, S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis, K. Böhm, and E. Ferrari, editors, Proceedings of the 9th International Conference on Extending Database Technology (EDBT'04), pages 605--620. Springer, 2004.Google ScholarGoogle Scholar
  31. A. Fern, R. Givan, and J. M. Siskind. Specific-to-general learning for temporal events with application to video event recognition. Journal of Artificial Intelligence Research, 17:379--449, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Freksa. Temporal reasoning based on semi-intervals. Artificial Intelligence, 54(1):199--227, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. B. Ganter and R. Wille. Formal Concept Analysis. Mathematical Foundations. Springer, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with regular expression constraints. In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors, Proceedings of the 25th International Conference on Very Large Data Bases (VLDB'99), pages 223--234. Morgan Kaufmann, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. F. Gianotti, M. Nanni, and D. Pedreschi. Efficient mining of temporally annotated sequences. In J. Ghosh, D. Lambert, D. B. Skillicorn, and J. Srivastava, editors, Proceedings of the 6th SIAM International Conference on Data Mining (SDM'06), pages 346--357. SIAM, 2006.Google ScholarGoogle Scholar
  36. A. Gionis, T. Kujala, and H. Mannila. Fragments of orders. In L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, editors, Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'03), pages 129--136. ACM Press, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. G. Guimarães. Eine Methode zur Entdeckung von komplexen Mustern in Zeitreihen mit Neuronalen Netzen und deren Überführung in eine symbolische Wissensrepräsentation. PhD thesis, Philipps-University Marburg, Germany, 1998. German.Google ScholarGoogle Scholar
  38. G. Guimarães, J. Peter, T. Penzel, and A. Ultsch. A method for automated temporal knowledge acquisition applied to sleep-related breathing disorders. Artificial Intelligence in Medicine, 23(3):211--237, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. G. Guimarães and A. Ultsch. A symbolic representation for pattern in time series using definitive clause grammars. In R. Klar and O. Opitz, editors, Proceedings of the 20th Annual Conference of the German Classification Society (GfKl'96), pages 105--111. Springer, 1997.Google ScholarGoogle Scholar
  40. G. Guimarães and A. Ultsch. A method for temporal knowledge conversion. In D. J. Hand, J. N. Kok, and M. R. Berthold, editors, Proceedings of the 3rd International Conference in Intelligent Data Analysis (IDA'99), pages 369--380. Springer, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. R. Gwadera, M. J. Atallah, and W. Szpankowski. Markov models for identification of significant episodes. In H. Kargupta, J. Srivastava, C. Kamath, and A. Goodman, editors, Proceedings of the 5th SIAM International Conference on Data Mining (SDM'05). SIAM, 2005.Google ScholarGoogle Scholar
  43. J. Han, W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related databases. In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD'98), pages 214--218. AAAI Press, 1998.Google ScholarGoogle Scholar
  44. J. Han and J. Pei. Pattern growth methods for sequential pattern mining: Principles and extensions. In Workshop on Temporal Data Mining, 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'01). ACM Press, 2001.Google ScholarGoogle Scholar
  45. S. K. Harms and J. Deogun. Sequential association rule mining with time lags. Journal of Intelligent Information Systems, Special issue on Data Mining, 22(1):7--22, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. S. K. Harms, J. S. Deogun, J. Saquer, and T. Tadesse. Discovering representative episodal association rules from event sequences using frequent closed episode sets and event constraints. In N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings of the 1st IEEE International Conference on Data Mining (ICDM'01), pages 603--606. IEEE Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. K. Harms, J. S. Deogun, and T. Tadesse. Discovering sequential association rules with constraints and time lags in multiple sequences. In Proceedings of the 13th International Symposium on Foundations of Intelligent Systems, pages 432--441. Springer, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. F. Höppner. Discovery of temporal patterns - learning rules about the qualitative behaviour of time series. In L. D. Raedt and A. Siebes, editors, Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD'01), pages 192--203. Springer, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. F. Höppner. Discovery of core episodes from sequences - using generalization for defragmentation of rule sets. In D. Hand, R. Bolton, and N. Adams, editors, Proceedings ESF Exploratory Workshop on Pattern Detection and Discovery in Data Mining, pages 199--213. Springer, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. F. Höppner. Handling feature ambiguity in knowledge discovery from time series. In Proceedings of the 7th International Conference on Discovery Science (DS'02), pages 398--405. Springer, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. F. Höppner. Learning dependencies in multivariate time series. In Workshop on Knowledge Discovery in (Spatio-) Temporal Data at the 15th Eureopean Conference on Artificial Intelligence (ECAI'02), pages 25--31, 2002.Google ScholarGoogle Scholar
  52. F. Höppner. Knowledge Discovery from Sequential Data. PhD thesis, Technical University Braunschweig, Germany, 2003.Google ScholarGoogle Scholar
  53. F. Höppner and F. Klawonn. Finding informative rules in interval sequences. Intelligent Data Analysis, 6(3):237--255, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  54. Interagon. The Interagon Query Language - A reference guide, 2002. Interagon AS, Trondheim, Norway, http://www.interagon.com.Google ScholarGoogle Scholar
  55. L. Jiang and H. J. Hamilton. Methods for mining frequent sequential patterns. In Y. Xiang and B. Chaibdraa, editors, Proceedings of the 16th Conference of the Canadian Society for Computational Studies of Intelligence (AI'03), pages 486--491. Springer, 2003.Google ScholarGoogle Scholar
  56. P.-S. Kam and A. W.-C. Fu. Discovering temporal patterns for interval-based events. In Y. Kambayashi, M. K. Mohania, and A. M. Tjoa, editors, Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovery (DaWaK'00), pages 317--326. Springer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series: A survey and novel approach. In M. Last, A. Kandel, and H. Bunke, editors, Data Mining In Time Series Databases, chapter 1, pages 1--22. World Scientific, Singapore, 2004.Google ScholarGoogle Scholar
  58. J. R. Koza. Genetic programming. In J. G. Williams and A. Kent, editors, Encyclopedia of Computer Science and Technology, volume 39, pages 29--43. Marcel-Dekker, 1998.Google ScholarGoogle Scholar
  59. H.-C. Kum, J. Pei, W. Wang, and D. Duncan. Approx-MAP: Approximate mining of consensus sequential patterns. In D. Barbará and C. Kamath, editors, Proceedings of the 3rd SIAM International Conference on Data Mining (SDM'03), pages 311--315. SIAM, 2003.Google ScholarGoogle Scholar
  60. M. Last, Y. Klein, and A. Kandel. Knowledge discovery in time series databases. IEEE Transactions on Systems, Man, and Cybernetics, 31(1):160--169, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. S. Laxman, P. Sastry, and K. Unnikrishnan. Discovering frequent episodes and learning hidden markov models: A formal connection. IEEE Transactions on Knowledge and Data Engineering, 17(11):1505--1517, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 2003 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 2--11. ACM Press, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. M.-Y. Lin and S.-Y. Lee. Fast discovery of sequential patterns by memory indexing. In Y. Kambayashi, W. Winiwarter, and M. Arikawa, editors, Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery (DaWaK'02), pages 150--160. Springer, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with unknown periods. In Proceedings of the 17th International Conference on Data Engineering (ICDE'01), pages 205--214. IEEE Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. O. Maimon and M. Last. Knowledge Discovery and Data Mining, the Info-Fuzzy Network (IFN) Methodology. Kluwer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. H. Mannila and C. Meek. Global partial orders from sequential data. In R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, editors, Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'00), pages 161--168. ACM Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. H. Mannila and H. Toivonen. Discovering generalized episodes using minimal occurrences. In E. Simoudis, J. Han, and U. M. Fayyad, editors, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96), pages 146--151. AAAI Press, 1996.Google ScholarGoogle Scholar
  68. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259--289, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. H. Mannila, H. Toivonen, and I. Verkamo. Discovery of frequent episodes in event sequences. In U. M. Fayyad and R. Uthurusamy, editors, Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining (KDD'96), pages 210--215. AAAI Press, 1995.Google ScholarGoogle Scholar
  70. N. Méger and C. Rigotti. Constraint-based mining of episode rules and optimal window sizes. In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors, Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'04), pages 313--324. Springer, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. C. Mooney and J. F. Roddick. Mining relationships between interacting episodes. In M. W. Berry, U. Dayal, C. Kamath, and D. B. Skillicorn, editors, Proceedings of the 4th SIAM International Conference on Data Mining (SDM'04). SIAM, 2004.Google ScholarGoogle Scholar
  72. F. Mörchen. Algorithms for time series knowledge mining. In T. Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, Proceedings The Twelveth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 668--673, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. F. Mörchen. A better tool than allen's relations for expressing temporal knowledge in interval data. In T. Li, C. Perng, H. Wang, and C. Domeniconi, editors, Workshop on Temporal Data Mining at the Twelveth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 25--34, 2006.Google ScholarGoogle Scholar
  74. F. Mörchen. Time Series Knowledge Mining. PhD thesis, Philipps-University Marburg, Germany, 2006.Google ScholarGoogle Scholar
  75. F. Mörchen and A. Ultsch. Mining hierarchical temporal patterns in multivariate time series. In S. Biundo, T. W. Frühwirth, and G. Palm, editors, Proceedings of the 27th Annual German Conference in Artificial Intelligence (KI'04), pages 127--140. Springer, 2004.Google ScholarGoogle Scholar
  76. F. Mörchen and A. Ultsch. Optimizing time series discretization for knowledge discovery. In R. Grossman, R. Bayardo, and K. P. Bennett, editors, Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'05), pages 660--665. ACM Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. F. Mörchen and A. Ultsch. Efficient mining of understandable patterns from multivariate interval time series. to appear in Data Mining and Knowledge Discovery, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. F. Mörchen, A. Ultsch, and O. Hoos. Extracting interpretable muscle activation patterns with Time Series Knowledge Mining. International Journal of Knowledge-Based & Intelligent Engineering Systems, 9(3):197--208, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. G. Nagypal and B. Motik. A fuzzy model for representing uncertain, subjective and vague temporal knowledge in ontologies. In R. Meersman, Z. Tari, and D. C. Schmidt, editors, Proceedings International Conference on Ontologies, Databases and Applications of Semantics, (ODBASE'03), pages 906--923. Springer, 2003.Google ScholarGoogle Scholar
  80. T. Oates, M. D. Schmill, and P. R. Cohen. Parallel and distributed search for structure in multivariate time series. Technical Report UM-CS-1996-023, Experimental Knowledge Systems Laboratory, University of Massachusetts Amherst, MA, USA, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. T. Oates, M. D. Schmill, D. Jensen, and P. R. Cohen. A family of algorithms for finding temporal structure in data. In Proceedings 6th International Workshop on Artificial Intelligence and Statistics, 1997.Google ScholarGoogle Scholar
  82. H. J. Ohlbach. Relations between fuzzy time intervals. In Proceedings 11th International Symposium on Temporal Representation and Reasoning (TIME'04), pages 44--51. IEEE Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. B. Padmanabhan and A. Tuzhilin. Pattern discovery in temporal databases: a temporal logic approach. In E. Simoudis, J. Han, and U. M. Fayyad, editors, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96), pages 351--354. AAAI Press, 1996.Google ScholarGoogle Scholar
  84. P. Papaterou, G. Kollios, S. Sclaroff, and D. Gunopoulos. Discovering frequent arrangements of temporal intervals. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05), pages 354--361, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In Proceeding of the 7th International Conference on Database Theory (ICDT'99), pages 398--416. Springer, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. J. Pei and J. Han. Constrained frequent pattern mining: a pattern-growth view. ACM SIGKDD Explorations Newsletter, 4(1):31--39, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of the 17th International Conference on Data Engineering (ICDE'01), pages 215--224. IEEE Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. J. Pei, J. Han, and W. Wang. Constraint-based sequential pattern mining: the pattern-growth methods. Journal of Intelligent Information Systems, 28(2):133--160, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. S. Yu. Discovering frequent closed partial orders from strings. IEEE Transactions on Knowledge and Data Engineering, 18(11):1467--1481, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal. Multi-dimensional sequential pattern mining. In CIKM, pages 81--88, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. C. Rainsford and J. Roddick. Adding temporal semantics to association rules. In J. M. Zytkow and J. Rauch, editors, Proceedings of the 3rd European Conference on Principles of Data Mining and Knowledge Discovery (PKDD'99), pages 504--509. Springer, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. J. F. Roddick and C. H. Mooney. Linear temporal sequences and their interpretation using midpoint relationships. IEEE Transactions on Knowledge and Data Engineering, 17(1):133--135, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. J. J. Rodriguez, C. J. Alonso, and H. Boström. Learning first order logic time series classifiers: Rules and boosting. In D. A. Zighed, H. J. Komorowski, and J. M. Zytkow, editors, Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD'00), pages 299--308. Springer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. P. Saetrom and M. L. Hetland. Unsupervised temporal rule mining with genetic programming and specialized hardware. In M. A. Wani, K. J. Cios, and K. Hafeez, editors, Proceedings of the 2003 International Conference on Machine Learning and Applications (ICMLA'03), pages 145--151. CSREA Press, 2003.Google ScholarGoogle Scholar
  95. E. Schwalb and L. Vila. Temporal constraints: A survey. Technical report, ICS, University of California at Irvine, CA, USA, 1997.Google ScholarGoogle Scholar
  96. Y. Shahar. A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1--2):79--133, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. H. Shatkay. The Fourier transform - A primer. Technical Report CS-95-37, Department of Computer Science, Brown University, Providence, RI, USA, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, page 336. IEEE Press, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. J. M. Siskind. Grounding the lexical semantics of verbs in visual perception using force dynamics and event logic. Journal of Artificial Intelligence Research, 15:31--90, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. C. Snoek and M. Worring. Multimedia event based video indexing using time intervals. IEEE Transactions on Multimedia, 7(4):638--647, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, editors, Proceedings of the 5th International Conference on Extending Database Technology (EDBT'96), pages 3--17. Springer, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Z. Troníček. Episode matching. In A. Amir and G. M. Landau, editors, Proceedings of the 12th Annual Symposium of Combinatorial Pattern Matching, pages 143--146. Springer, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. P. Tzvetkov, X. Yan, and J. Han. TSP: Mining Top-K closed sequential patterns. In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM'03), pages 347--354. IEEE Press, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. A. Ultsch. Eine unifikationsbasierte Grammatik zur Beschreibung von komplexen Mustern in multivariaten Zeitreihen. personal notes, 1996. German.Google ScholarGoogle Scholar
  105. A. Ultsch. Unification-based temporal grammar. Technical Report 37, Department of Mathematics and Computer Science, Philipps-University Marburg, Germany, 2004.Google ScholarGoogle Scholar
  106. M. Vilain. A system for reasoning about time. In Proceedings of the 2nd National Conference on Artificial Intelligence (AAAI'82), pages 197--201. AAAI Press / MIT Press, 1982.Google ScholarGoogle Scholar
  107. R. Villafane, K. A. Hua, D. Tran, and B. Maulik. Mining interval time series. In Proceedings of the 1st International Conference on Data Warehousing and Knowledge Discovery (DaWaK'99), pages 318--330. Springer, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. R. Villafane, K. A. Hua, D. Tran, and B. Maulik. Knowledge discovery from series of interval events. Journal of Intelligent Information Systems, 15(1):71--89, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. J. Vilo. Discovering frequent patterns from strings. Technical Report C-1998-9, Department of Computer Science, University of Helsinki, Finland, 1998.Google ScholarGoogle Scholar
  110. J. Vilo. Pattern Discovery from Biosequences. PhD thesis, Department of Computer Science, University of Helsinki, Finland, 2002.Google ScholarGoogle Scholar
  111. J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In Proceedings of the 20th International Conference on Data Engineering (ICDE'04), pages 79--90. IEEE Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. G. M. Weiss. Timeweaver: A genetic algorithm for identifying predictive patterns in sequences of events. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pages 718--725. Morgan Kaufmann, 1999.Google ScholarGoogle Scholar
  113. E. Winarko and J. F. Roddick. Armada - an algorithm for discovering richer relative temporal association rules from interval-based data. Data & Knowledge Engineering, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. S. Y. and M. M. A. Knowledge-based temporal abstraction in clinical domains. Artifical Intelligende in Medicine, 8(3):267--98, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  115. X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large datasets. In D. Barbará and C. Kamath, editors, Proceedings of the 3rd SIAM International Conference on Data Mining (SDM'03), pages 166--177. SIAM, 2003.Google ScholarGoogle Scholar
  116. J. Yang and W. Wang. CLUSEQ: Efficient and effective sequence clustering. In U. Dayal, K. Ramamritham, and T. M. Vijayaraman, editors, Proceedings of the 19th International Conference on Data Engineering (ICDE'03), pages 101--112. IEEE Press, 2003.Google ScholarGoogle Scholar
  117. J. Yang, W. Wang, and P. Yu. STAMP: Discovery of statistically important pattern repeats in a long sequence. In D. Barbará and C. Kamath, editors, Proceedings of the 3rd SIAM International Conference on Data Mining (SDM'03), pages 224--238. SIAM, 2003.Google ScholarGoogle Scholar
  118. J. Yang, W. Wang, and P. Yu. Discovering high order periodic patterns. Knowledge and Information Systems, 6(3):243--268, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic patterns in time series data. In R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, editors, Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'00), pages 275--279. ACM Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. J. Yang, W. Wang, and P. S. Yu. InfoMiner: Mining surprising periodic patterns. In F. Provost and R. Srikant, editors, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'01), pages 395--400. ACM Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. J. Yang, W. Wang, and P. S. Yu. InfoMiner+: Mining partial periodic patterns with gap penalties. In Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM'02), pages 725--728. IEEE Press, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. M. Yoshida, T. Iizuka, H. Shiohara, and M. Ishiguro. Mining sequential patterns including time intervals. In B. V. Dasarathy, editor, Proceedings of SPIE - Data Mining and Knowledge Discovery: Theory, Tools, and Technology II, volume 4057, pages 213--220, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  123. C.-C. Yu and Y.-L. Chen. Mining sequential patterns from multidimensional sequence data. IEEE Transactions on Knowledge and Data Engineering, 17(1):136--140, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. M. J. Zaki. Efficient enumeration of frequent sequences. In G. Gardarin, J. C. French, N. Pissinou, K. Makki, and L. Bouganim, editors, Proceedings of the 7th International Conference on Information and Knowledge Management (CIKM'98), pages 68--75. ACM Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. M. J. Zaki and C.-J. Hsiao. Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transaction on Knowledge and Data Engineering, 17(4):462--478, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Q. Zhao and S. Bhowmick. Sequential pattern mining: A survey. Technical report, Nanyang Technichal University, Singapore, 2003.Google ScholarGoogle Scholar

Index Terms

  1. Unsupervised pattern mining from symbolic temporal data

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM SIGKDD Explorations Newsletter
            ACM SIGKDD Explorations Newsletter  Volume 9, Issue 1
            Special issue on data mining for health informatics
            June 2007
            58 pages
            ISSN:1931-0145
            EISSN:1931-0153
            DOI:10.1145/1294301
            Issue’s Table of Contents

            Copyright © 2007 Author

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 June 2007

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader