skip to main content
10.1145/1143844.1143918acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
Article

Spectral clustering for multi-type relational data

Published:25 June 2006Publication History

ABSTRACT

Clustering on multi-type relational data has attracted more and more attention in recent years due to its high impact on various important applications, such as Web mining, e-commerce and bioinformatics. However, the research on general multi-type relational data clustering is still limited and preliminary. The contribution of the paper is three-fold. First, we propose a general model, the collective factorization on related matrices, for multi-type relational data clustering. The model is applicable to relational data with various structures. Second, under this model, we derive a novel algorithm, the spectral relational clustering, to cluster multi-type interrelated data objects simultaneously. The algorithm iteratively embeds each type of data objects into low dimensional spaces and benefits from the interactions among the hidden structures of different types of data objects. Extensive experiments demonstrate the promise and effectiveness of the proposed algorithm. Third, we show that the existing spectral clustering algorithms can be considered as the special cases of the proposed model and algorithm. This demonstrates the good theoretic generality of the proposed model and algorithm.

References

  1. Bach, F. R., & Jordan, M. I. (2004). Learning spectral clustering. Advances in Neural Information Processing Systems 16.]]Google ScholarGoogle Scholar
  2. Banerjee, A., Dhillon, I. S., Ghosh, J., Merugu, S., & Modha, D. S. (2004). A generalized maximum entropy approach to bregman co-clustering and matrix approximation. KDD (pp. 509--514).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bhatia, R. (1997). Matrix analysis. New York: Springeer-Cerlag.]]Google ScholarGoogle ScholarCross RefCross Ref
  4. Chan, P. K., Schlag, M. D. F., & Zien, J. Y. (1993). Spectral k-way ratio-cut partitioning and clustering. DAC '93 (pp. 749--754).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. D. Lee, & H. S. Seung (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788--791.]]Google ScholarGoogle ScholarCross RefCross Ref
  6. Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph partitioning. KDD (pp. 269--274).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dhillon, I. S., Mallela, S., & Modha, D. S. (2003). Information-theoretic co-clustering. KDD'03 (pp. 89--98).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ding, C., He, X., & Simon, H. (2005). On the equivalence of non-negative matrix factorization and spectral clustering. SDM'05.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. Ding, C. H. Q., & He, X. (2004). Linearized cluster assignment via spectral ordering. ICML.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ding, C. H. Q., He, X., Zha, H., Gu, M., & Simon, H. D. (2001). A min-max cut algorithm for graph partitioning and data clustering. Proceedings of ICDM 2001 (pp. 107--114).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. El-Yaniv, R., & Souroujon, O. (2001). Iterative double clustering for unsupervised and semi-supervised learning. ECML (pp. 121--132).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gao, B., Liu, T.-Y., Zheng, X., Cheng, Q.-S., & Ma, W.-Y. (2005). Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. KDD '05 (pp. 41--50).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. Golub, & Loan, C. (1989). Matrix computations. Johns Hopkins University Press.]]Google ScholarGoogle Scholar
  14. Hofmann, T. (1999). Probabilistic latent semantic analysis. Proc. of Uncertainty in Artificial Intelligence, UAI'99. Stockholm.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hofmann, T., & Puzicha, J. (1999). Latent class models for collaborative filtering. IJCAI'99. Stockholm.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Zha, C. Ding, M. X., & H. Simon (2001). Bi-partite graph partitioning and data clustering. ACM CIKM'01.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lang, K. (1995). News weeder: Learning to filter netnews. ICML.]]Google ScholarGoogle Scholar
  18. Li, T. (2005). A general model for clustering binary data. KDD'05.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Long, B., Zhang, Z. M., & Yu, P. S. (2005). Co-clustering by block value decomposition. KDD'05.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems 14.]]Google ScholarGoogle Scholar
  21. R. O. Duda, P. E. Hart, & D. G. Stork. (2000). Pattern classification. New York: John Wiley & Sons.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888--905.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Strehl, A., & Ghosh, J. (2002). Cluster ensembles - a knowledge reuse framework for combining partitionings. AAAI 2002 (pp. 93--98). AAAI/MIT Press.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Taskar, B., Segal, E., & Koller, D. (2001). Probabilistic classification and clustering in relational data. Proceeding of IJCAI-01.]]Google ScholarGoogle Scholar
  25. Tishby, N., Pereira, F., & Bialek, W. (1999). The information bottleneck method. Proceedings of the 37-th Annual Allerton Conference on Communication, Control and Computing (pp. 368--377).]]Google ScholarGoogle Scholar
  26. Wang, J., Zeng, H., Chen, Z., Lu, H., Tao, L., & Ma, W.-Y. (2003). Recom: reinforcement clustering of multi-type interrelated data objects. SIGIR '03 (pp. 274--281).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Zeng, H.-J., Chen, Z., & Ma, W.-Y. (2002). A unified framework for clustering heterogeneous web objects. WISE '02 (pp. 161--172).]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zha, H., Ding, C., Gu, M., He, X., & Simon, H. (2002). Spectral relaxation for k-means clustering. Advances in Neural Information Processing Systems, 14.]]Google ScholarGoogle Scholar

Index Terms

  1. Spectral clustering for multi-type relational data

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICML '06: Proceedings of the 23rd international conference on Machine learning
        June 2006
        1154 pages
        ISBN:1595933832
        DOI:10.1145/1143844

        Copyright © 2006 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 June 2006

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        ICML '06 Paper Acceptance Rate140of548submissions,26%Overall Acceptance Rate140of548submissions,26%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader