skip to main content
article

Visual cues can be sufficient for triggering automatic, reflexlike spatial updating

Authors Info & Claims
Published:01 July 2005Publication History
Skip Abstract Section

Abstract

“Spatial updating” refers to the process that automatically updates our egocentric mental representation of our immediate surround during self-motions, which is essential for quick and robust spatial orientation. To investigate the relative contribution of visual and vestibular cues to spatial updating, two experiments were performed in a high-end Virtual Reality system. Participants were seated on a motion platform and saw either the surrounding room or a photorealistic virtual model presented via head-mounted display or projection screen. After upright rotations, participants had to point “as accurately and quickly as possibl ” to previously learned targets that were outside of the current field of view (FOV). Spatial updating performance, quantified as response time, configuration error, and pointing error, was comparable in the real and virtual reality conditions when the FOV was matched. Two further results challenge the prevailing basic assumptions about spatial updating: First, automatic, reflexlike spatial updating occurred without any physical motion, i.e., visual information from a known scene alone can, indeed, be sufficient, especially for large FOVs. Second, continuous-motion information is not, in fact, mandatory for spatial updating---merely presenting static images of new orientations proved sufficient, which motivated our distinction between continuous and instant-based spatial updating.

References

  1. Amorim, M. A. and Stucchi, N. 1997. Viewer- and object-centered mental explorations of an imagined environment are not equivalent. Cognit. Brain Res. 5, 3 (Mar.), 229--239.Google ScholarGoogle ScholarCross RefCross Ref
  2. Arthur, K. W. 2000. Effects of field of view on performance with head-mounted displays. Ph.D. thesis, Department of Computer Science, University of North Carolina, Chapel Hill. Available: ftp://ftp.cs.unc.edupublications/techreports/00-019.pdf. Google ScholarGoogle Scholar
  3. Bakker, N. H., Werkhoven, P. J., and Passenier, P. O. 1999. The effects of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence---Teleoperators and Virtual Environments 8, 1 (Feb.), 36--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bakker, N. H., Werkhoven, P. J., and Passenier, P. O. 2001. Calibrating Visual Path Integration in VEs. Presence---Teleoperators and Virtual Environments 10, 2 (Apr.), 216--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Batschelet, E. 1981. Circular statistics in biology. Academic Press, London.Google ScholarGoogle Scholar
  6. Carpenter, M. and Proffit, D. R. 2001. Comparing viewer and array mental rotations in different planes. Memory & Cognition 29, 3 (Apr.), 441--448.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chance, S. S., Gaunet, F., Beall, A. C., and Loomis, J. M. 1998. Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence---Teleoperators and Virtual Environments 7, 2 (Apr.), 168--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Christou, C., Tjan, B., and Bülthoff, H. 1999. Viewpoint information provided by familiar environment facilitates object identification. Tech. Rep. 68, Max-Planck Institut für biologische Kybernetik. Available: www.kyb.mpg.de /publication.html?publ=1536.Google ScholarGoogle Scholar
  9. Cobb, S. V. G., Nichols, S., Ramsey, A., and Wilson, J. R. 1999. Virtual reality-induced symptoms and effects (VRISE). Presence---Teleoperators and Virtual Environments 8, 2 (Apr.), 169--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Creem, S. H. and Proffitt, D. R. 2000. Egocentric measures of spatial updating: Is there an advantage for action? Poster presented at the 41st Meeting of the Psychonomic Society, New Orleans, LA.Google ScholarGoogle Scholar
  11. Creem, S. H., Wraga, M., and Proffitt, D. R. 2001. Imagining physically impossible self-rotations: Geometry is more important than gravity. Cognition 81, 1 (Aug.), 41--64.Google ScholarGoogle ScholarCross RefCross Ref
  12. Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., and Thompson, W. B. 2003. The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual environments. Tech. Rep. UUCS-03-016, School of Computing, University of Utah, Salt Lake City, USA. Available: www.cs.utahtechrep2003UUCS-03-016.pdf.Google ScholarGoogle Scholar
  13. Easton, R. D. and Sholl, M. J. 1995. Object-array structure, frames of reference, and retrieval of spatial knowledge. J. Exp. Psychol.-Learn. Mem. Cogn. 21, 2 (Mar.), 483--500.Google ScholarGoogle ScholarCross RefCross Ref
  14. Farrell, M. J. and Robertson, I. H. 1998. Mental rotation and the automatic updating of body-centered spatial relationships. J. Exp. Psychol.-Learn. Mem. Cogn. 24, 1 (Jan.), 227--233.Google ScholarGoogle ScholarCross RefCross Ref
  15. Farrell, M. J. and Thomson, J. A. 1998. Automatic spatial updating during locomotion without vision. Q. J. Exp. Psychol. Sect A-Hum. Exp. Psychol. 51, 3 (Aug.), 637--654.Google ScholarGoogle Scholar
  16. Farrell, M. J. and Robertson, I. H. 2000. The automatic updating of egocentric spatial relationships and its impairment due to right posterior cortical lesions. Neuropsychologia 38, 5, 585--595.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hettinger, L. J., Nelson, W. T., and Haas, M. W. 1996. Target detection performance in helmet-mounted and conventional dome displays. International Journal of Aviation Psychology 6, 4, 321--334.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hollins, M. and Kelley, E. K. 1988. Spatial updating in blind and sighted people. Percept. Psychophys. 43, 4 (Apr.), 380--388.Google ScholarGoogle Scholar
  19. Howarth, P. A. and Costello, P. J. 1997. The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system. Displays 18, 2 (Dec.), 107--116.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kearns, M. J., Warren, W. H., Duchon, A. P., and Tarr, M. J. 2002. Path integration from optic flow and body senses in a homing task. Perception 31, 3, 349--374.Google ScholarGoogle ScholarCross RefCross Ref
  21. Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., and Golledge, R. G. 1998. Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychol. Sci. 9, 4, 293--298.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kosslyn, S. M. 1994. Image and brain: The resolution of the imagery debate. MIT Press, Cambridge, MA. Google ScholarGoogle Scholar
  23. Loomis, J. M., Da Silva, J. A., Philbeck, J. W., and Fukusima, S. S. 1996. Visual perception of location and distance. Current Directions in Psychological Science 5, 3 (Jan.), 72--77.Google ScholarGoogle ScholarCross RefCross Ref
  24. May, M. 1996. Cognitive and embodied modes of spatial imagery. Psychologische Beiträge 38, 418--434.Google ScholarGoogle Scholar
  25. May, M. 2000. Kognition im Umraum. Studien zur Kognitionswissenschaft. DUV: Kognitionswissenschaft, Wiesbaden.Google ScholarGoogle Scholar
  26. May, M. 2004. Imaginal perspective switches in remembered environments: Transformation versus interference accounts. Cognitive Psychology 48, 2 (Mar.), 163--206.Google ScholarGoogle ScholarCross RefCross Ref
  27. May, M. and Klatzky, R. L. 2000. Path integration while ignoring irrelevant movement. J. Exp. Psychol.-Learn. Mem. Cogn. 26, 1 (Jan.), 169--186.Google ScholarGoogle ScholarCross RefCross Ref
  28. Mon-Williams, M. and Wann, J. P. 1998. Binocular virtual reality displays: When problems do and don't occur. Human Factors 40, 1 (Mar.), 42--49.Google ScholarGoogle ScholarCross RefCross Ref
  29. Nelson, W. T., Hettinger, L. J., Cunningham, J. A., Brickman, B. J., Haas, M. W., and McKinley, R. L. 1998. Effects of localized auditory information on visual target detection performance using a helmet-mounted display. Human Factors 40, 3 (Sept.), 452--460.Google ScholarGoogle ScholarCross RefCross Ref
  30. Péruch, P. and Gaunet, F. 1998. Virtual environments as a promising tool for investigating human spatial cognition. Cah. Psychol. Cogn.-Curr. Psychol. Cogn. 17, 4--5 (Aug.--Oct.), 881--899.Google ScholarGoogle Scholar
  31. Presson, C. C. and Montello, D. R. 1994. Updating after rotational and translational body movements: Coordinate structure of perspective space. Perception 23, 12, 1447--1455.Google ScholarGoogle ScholarCross RefCross Ref
  32. Riecke, B. E. and von der Heyde, M. 2002. Qualitative modeling of spatial orientation processes using logical propositions: Interconnecting spatial presence, spatial updating, piloting, and spatial cognition. Tech. Rep. 100, MPI for Biological Cybernetics. Avaliable: www.kyb.mppublication.html?publ=2021.Google ScholarGoogle Scholar
  33. Riecke, B. E., van Veen, H. A. H. C., and Bülthoff, H. H. 2002a. Visual Homing Is Possible Without Landmarks: A Path Integration Study in Virtual Reality. Presence---Teleoperators and Virtual Environments 11, 5, 443--473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Riecke, B. E., von der Heyde, M., and Bülthoff, H. H. 2002b. Spatial updating in virtual environments: What are vestibular cues good for? Journal of Vision 2, 7 (May), 421a. http://journalofvision.org/2/7/421/ Available: www.kyb.mpg.de /publication.html?publ=628.Google ScholarGoogle Scholar
  35. Riecke, B. E., Schulte-Pelkum, J., and Bülthoff, H. H. 2005. Perceiving simulated ego-motions in virtual reality---comparing large screen displays with HMDs. In SPIE---Invited paper on VALVE: Vision, Action, and Locomotion in Virtual (and Real) Environments (San Jose CA). Available: www.kyb.mppublication.html?publ=3233.Google ScholarGoogle Scholar
  36. Rieser, John, J., Guth, David, A., and Hill, Everett, W. 1982. Mental processes mediating independent travel: Implications for orientation and mobility. Journal of Visual Impairment and Blindness 76, 6 (Jun.), 213--218.Google ScholarGoogle ScholarCross RefCross Ref
  37. Rieser, J. J. 1989. Access to knowledge of spatial structure at novel points of observation. J. Exp. Psychol.-Learn. Mem. Cogn. 15, 6 (Nov.), 1157--1165.Google ScholarGoogle ScholarCross RefCross Ref
  38. Shelton, A. L. and McNamara, T. P. 2001. Systems of spatial reference in human memory. Cognitive Psychology 43, 4 (Dec.), 274--310.Google ScholarGoogle ScholarCross RefCross Ref
  39. Sholl, M. J. 1989. The relation between horizontality and rod-and-frame and vestibular navigational performance. J. Exp. Psychol.-Learn. Mem. Cogn. 15, 1 (Jan.), 110--125.Google ScholarGoogle ScholarCross RefCross Ref
  40. Simons, D. J. and Wang, R. F. 1998. Perceiving real-world viewpoint changes. Psychol. Sci. 9, 4 (Jul.), 315--320.Google ScholarGoogle ScholarCross RefCross Ref
  41. Simons, D. J., Wang, R. X. F., and Roddenberry, D. 2002. Object recognition is mediated by extraretinal information. Perception & Psychophysics 64, 4 (May), 521--530.Google ScholarGoogle ScholarCross RefCross Ref
  42. Stanney, K. M., Mourant, R. R., and Kennedy, R. S. 1998. Human factors issues in virtual environments: A review of the literature. Presence---Teleoperators and Virtual Environments 7, 4 (Aug.), 327--351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. von der Heyde, M. 2000. The Motion-Lab---A Virtual Reality Laboratory for Spatial Updating Experiments. Tech. Rep. 86, Max Planck Institute for Biological Cybernetics, Tübingen, Germany. Dec. Available: www.kyb.mppublication.html?publ=633.Google ScholarGoogle Scholar
  44. Wang, R. X. F. and Simons, D. J. 1999. Active and passive scene recognition across views. Cognition 70, 2 (Mar.), 191--210.Google ScholarGoogle Scholar
  45. Wang, R. X. F. and Spelke, E. S. 2000. Updating egocentric representations in human navigation. Cognition 77, 3 (Dec.), 215--250.Google ScholarGoogle ScholarCross RefCross Ref
  46. Wraga, M., Creem, S. H., and Proffitt, D. R. 1999a. The influence of spatial reference frames on imagined object- and viewer rotations. Acta Psychol. 102, 2--3 (Sept.), 247--264.Google ScholarGoogle ScholarCross RefCross Ref
  47. Wraga, M., Creem, S. H., and Proffitt, D. R. 1999b. Spatial updating of an irregularly shaped virtual array during self- and display rotations. Invest. Ophthalmol. Vis. Sci. 40, 4 (Mar.), 1.Google ScholarGoogle Scholar
  48. Wraga, M., Creem, S. H., and Proffitt, D. R. 2000. Updating displays after imagined object and viewer rotations. J. Exp. Psychol.-Learn. Mem. Cogn. 26, 1 (Jan.), 151--168.Google ScholarGoogle ScholarCross RefCross Ref
  49. Wraga, M., Creem-Regehr, S. H., and Proffitt, D. R. 2004. Spatial updating of virtual displays during self- and display rotation. Memory & Cognition 32, 3 (Apr.), 399--415.Google ScholarGoogle ScholarCross RefCross Ref
  50. Yardley, L. and Higgins, M. 1998. Spatial updating during rotation: The role of vestibular information and mental activity. J. Vestib. Res.-Equilib. Orientat. 8, 6 (Nov.-Dec.), 435--442.Google ScholarGoogle Scholar

Index Terms

  1. Visual cues can be sufficient for triggering automatic, reflexlike spatial updating

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Applied Perception
                ACM Transactions on Applied Perception  Volume 2, Issue 3
                July 05
                202 pages
                ISSN:1544-3558
                EISSN:1544-3965
                DOI:10.1145/1077399
                Issue’s Table of Contents

                Copyright © 2005 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 July 2005
                Published in tap Volume 2, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader