skip to main content
10.1145/369133.369253acmconferencesArticle/Chapter ViewAbstractPublication PagesrecombConference Proceedingsconference-collections
Article

A Gibbs sampling method to detect over-represented motifs in the upstream regions of co-expressed genes

Authors Info & Claims
Published:22 April 2001Publication History

ABSTRACT

Microarray experiments can reveal useful information on the transcriptional regulation. We try to find regulatory elements in the region upstream of translation start of coexpressed genes. Here we present a modification to the original Gibbs Sampling algorithm [12]. We introduce a probability distribution to estimate the number of copies of the motif in a sequence. The second modification is the incorporation of a higher-order background model. We have successfully tested our algorithm on several data sets. First we show results on two selected data set: sequences from plants containing the G-box motif and the upstream sequences from bacterial genes regulated by O2-responsive protein FNR. In both cases the motif sampler is able to find the expected motifs. Finally, the sampler is tested on 4 clusters of coexpressed genes from a wounding experiment in Arabidopsis thaliana. We find several putative motifs that are related to the pathways involved in the plant defense mechanism.

References

  1. {1} T. L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning, 21:51-80, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {2} G. F. Birkenmeier and C. A. Ryan. Wound signaling in tomato plants, evidence that aba is not a primary signal for defense gene activation. Plant Physiol, 117(2):687-693, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  3. {3} P. Bucher. Regulatory elements and expression profiles. Current Opinion in Structural Biology, 9:400-407, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  4. {4} F. De Smet, G. Thijs, K. Marchal, B. De Moor, and Y. Moreau. Quality-based clustering of gene expression profiles, submitted, 2000.Google ScholarGoogle Scholar
  5. {5} A. L. Delcher, D. Harman, S. Kasif, O. White, and S. L. Salzberg. Improved micorbial gene identification with glimmer. Nucleic Acid Research, 27(23):4636-4641, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  6. {6} J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278:680-, 1997.Google ScholarGoogle Scholar
  7. {7} M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95:14863-14868, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  8. {8} L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring expression data: Identification and analysis of coexpressed genes. Genome Research, 9:1106-1115, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  9. {9} J. D. Hughes, P. W. Estep, S. Tavazoie, and G. M. Church. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. Journal of Molecular Biology, 296:1205-1214, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  10. {10} L. J. Jensen and S. Knudsen. Automatic discovery of regulatory patterns in promoter regions based on whole cell expression data and functional annotation. Bioinformatics, 16(4):326-333, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  11. {11} A. Krogh. Two methods for improving performance of an hmm and their application for gene finding. In Proceedings ISMB'97, pages 179-186, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {12} C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton. Detecting subbtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science, 262:208-214, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  13. {13} R. J. Lipschutz, S. P. A. Fodor, T. R. Gingeras, and D. J. Lockheart. High density synthetic oligonucleotide arrays. Nature Genetics Supplement, 21:20-24, january 1999.Google ScholarGoogle ScholarCross RefCross Ref
  14. {14} J. S. Liu, A. F. Neuwald, and C. E. Lawrence. Bayesian models for multiple local sequence alignment and gibbs sampling strategies. Journal of the American Statistical Association, 90(432):1156-1170, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  15. {15} A. V. Lukashin and M. Borodowsky. Genemark.hmm: new solutions for gene finding. Nucleic Acid Research, 26:1107-1115, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  16. {16} Kathleen Marchal. The O2 paradox of Azospirillum brasilense under diazotrophic conditions. PhD thesis, FLTBW, KULeuven, 1999.Google ScholarGoogle Scholar
  17. {17} E. Mjolsness, T. Mann, R. Castaño, and B. Wold. From coexpression to coregulation: An approach to inferring transcriptional regulation among gene classes from large-scale expression data. In Proceedings NIPS 2000, volume 12, pages 928-934, 2000.Google ScholarGoogle Scholar
  18. {18} A. F. Neuwald, J. S. Liu and C. E. Lawrence. Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Science, 4:1618-1632, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  19. {19} N. Pavy, S. Rombauts, P. Déhais, C. Mathé, D. V. V. Ramana, P. Leroy, and P. Rouzé. Evaluation of gene prediction software using a genomic data set: Aplication to Arabidopsis thaliana sequences. Bioinformatics, 15:887-899, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  20. {20} H. Pena-Cortes, J. J. Sanchez-Serrano, R. Mertens, L. Willmitzer, and S. Prat. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor ii gene potato and tomato. Proc. Natl. Acad. Sci USA, 86:9851-9855, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  21. {21} P. Reymond and E. E. Farmer. Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol, 1(5):404-411, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  22. {22} P. Reymond, H. Weber, M. Damond, and E. E. Farmer. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 12:707-719, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  23. {23} S. Rombauts, P. Déhais, M. Van Montagu, and P. Rouzé. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research, 27:295-296, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  24. {24} F. P. Roth, J. D. Hughes, P. W. Estep, and G. M. Church. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole genome mRNA quantitation. Nature Biotechnology, 16:939-945, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  25. {25} J. Rouster, R. Leah, J. Mundy, and V. Cameron-Mills. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant Journal, 11(3):513-523, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  26. {26} M. Schena. Genome analysis with gene expression microarrays. BioEssays, 18(5):427-431, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  27. {27} M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270:467-470, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  28. {28} G. Sherlock. Analysis of large-scale gene expression data. Curr. Opin. Immunol., 12:201-205, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  29. {29} P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast S. Cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9:3273-3297, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  30. {30} Z. Szallasi. Genetic network analysis in light of massively parallel biological data acquisition. In Proceedings PSB'99, volume 4, pages 5-16, 1999.Google ScholarGoogle Scholar
  31. {31} S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic determination of genetic network architecture. Nature Genetics, 22(7):281-285, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  32. {32} G. Thijs, M. Lescot, K. Marchal, S. Rombauts, B. De Moor, P. Rouzé, and Y. Moreau. A higher order background model improves the detection by Gibbs sampling of potential promoter regulatory elements in DNA sequences. Technical Report 00-128, ESAT-SISTA/COSIC, KULeuven, 2000. submitted, Genome Research.Google ScholarGoogle Scholar
  33. {33} J. van Helden, B. André, and L. Collado-Vides. Extracting regulatory sites from upstream region of yeast genes by computational analysis of oligonucleotide frequencies. Journal of Molecular Biology, 281:827-842, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  34. {34} J. van Helden, A. F. Rios, and J. Collado-Vides. Discovering regulatory elements in noncoding sequences by analysis of spaced dyads. Nucleic Acids Research, 28(8):1808-1818, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  35. {35} A. Vanet, L. Marsan, A. Labigne, and M. F. Sagot. Inferring regulatory elements from a whole genome, an analysis of helicobacter pylori sigma(80) family of promoter signals. Journal of Molecular Biology, 297(2):335-353, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  36. {36} X. Wen, S. Fuhrman, G. S. Michaels, D. B. Carr, S. Smith, J. L. Barker, and R. Somogyi. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA, 95:334-339, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  37. {37} C. T. Workman and G. D. Stormo. Ann-spec: a method for discovering transcription binding sites with improved specificity. In Proceedings PSB'2000, volume 5, Honolulu, Hawai, 2000.Google ScholarGoogle Scholar
  38. {38} M. Q. Zhang. Large-scale gene expression data analysis: A new challenge to computational biologists. Genome Research, 9:681-688, 1999.Google ScholarGoogle Scholar
  39. {39} J. Zhu and M. Q. Zhang. Cluster, function and promoter: analysis of yeast expression array. In Proceedings PSB'2000, volume 5, pages 467-486, 2000.Google ScholarGoogle Scholar

Index Terms

  1. A Gibbs sampling method to detect over-represented motifs in the upstream regions of co-expressed genes

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            RECOMB '01: Proceedings of the fifth annual international conference on Computational biology
            April 2001
            316 pages
            ISBN:1581133537
            DOI:10.1145/369133
            • Chairman:
            • Thomas Lengauer

            Copyright © 2001 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 22 April 2001

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            RECOMB '01 Paper Acceptance Rate35of128submissions,27%Overall Acceptance Rate148of538submissions,28%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader