skip to main content
research-article

Named Entity Recognition and Relation Extraction: State-of-the-Art

Authors Info & Claims
Published:11 February 2021Publication History
Skip Abstract Section

Abstract

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.

References

  1. I. Muslea et al. 1999. Extraction patterns for information extraction tasks: A survey. In Proceedings of the AAAI Workshop on Machine Learning for Information Extraction.Google ScholarGoogle Scholar
  2. G. Simoes, H. Galhardas, and L. Coheur. 2009. Information extraction tasks: A survey. In Proceedings of the INForum.Google ScholarGoogle Scholar
  3. Linguistic Data Consortium. 2017. MUC Data Sets. Retrieved from http://www-nlpir.nist.gov/related_projects/muc/muc_data/muc_data_index.html.Google ScholarGoogle Scholar
  4. A. Rodriguez. 2017. MUC - Cohen Courses. Retrieved from http://curtis.ml.cmu.edu/w/courses/index.php/MUC.Google ScholarGoogle Scholar
  5. Linguistic Data Consortium. 2002. Annotation Tasks and Specifications. Retrieved from https://www.ldc.upenn.edu/collaborations/past-projects/ace/annotation-tasks-and-specifications.Google ScholarGoogle Scholar
  6. National Institute of Standards and Technology (NIST). 2017. TAC Knowledge Base Population (KBP). In Proceedings of the Text Analytic Conference.Google ScholarGoogle Scholar
  7. I. Augenstein, M. Das, S. Riedel, L. Vikraman, and A. McCallum. 2017. SemEval 2017 Task 10: ScienceIE - extracting keyphrases and relations from scientific publications. ArXiv170402853 Cs Stat, Apr. 2017.Google ScholarGoogle Scholar
  8. L. Neve. 2019. GENIA Corpus. The ORBIT Project. Retrieved from https://orbit.nlm.nih.gov/browse-repository/dataset/human-annotated/83-genia-corpus.Google ScholarGoogle Scholar
  9. R. Merchant, M. E. Okurowski, and N. Chinchor. 1996. The multilingual entity task (MET) overview. In Proceedings of a Workshop on held at Vienna, Virginia: May 6--8, 1996. 445--447. DOI:10.3115/1119018.1119075Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Asian Federation of Natural Language Processing. 2008. IJCNLP-08 Workshop on NER for South and South East Asian Languages. Retrieved from http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5.Google ScholarGoogle Scholar
  11. M. K. Malik. 2017. Urdu named entity recognition and classification system using artificial neural network. ACM Trans Asian Low-Resour Lang. Inf. Proc. 17, 1 (2017), 2:1--2:13. DOI:10.1145/3129290Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Peng and M. Dredze. 2015. Named entity recognition for Chinese social media with jointly trained embeddings. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 548--554.Google ScholarGoogle Scholar
  13. W. Wang, F. Bao, and G. Gao. 2015. Mongolian named entity recognition using suffixes segmentation. In Proceedings of the International Conference on Asian Language Processing (IALP’15). 169--172. DOI:10.1109/IALP.2015.7451558Google ScholarGoogle Scholar
  14. D. Nadeau and S. Sekine. 2007. A survey of named entity recognition and classification. Lingvisticae Investig. 30, 1 (2007), 3--26. DOI:10.1075/li.30.1.03nadGoogle ScholarGoogle ScholarCross RefCross Ref
  15. N. Kanya and T. Ravi. 2012. Modelings and techniques in named entity recognition-an information extraction task. In Proceedings of the IET Chennai 3rd International on Sustainable Energy and Intelligent Systems (SEISCON’12). DOI:10.1049/cp.2012.2199Google ScholarGoogle Scholar
  16. G. K. Palshikar. 2013. Techniques for named entity recognition. Bioinforma. Concepts Methodol. Tools Appl. 400 (2013).Google ScholarGoogle Scholar
  17. R. Sharnagat. 2014. Named entity recognition: A literature survey. Report 11305R013. Cent. Indian Lang. Technol.Google ScholarGoogle Scholar
  18. N. Patil, A. S. Patil, and B. Pawar. 2016. Survey of named entity recognition systems with respect to Indian and foreign languages. Int. J. Comput. Appl. 134, 16 (2016).Google ScholarGoogle Scholar
  19. L. Ratinov and D. Roth. 2019. Design challenges and misconceptions in named entity recognition. 147--155. Retrieved from http://dl.acm.org/citation.cfm?id=1596374.1596399.Google ScholarGoogle Scholar
  20. N. Rizzolo and D. Roth. 2007. Modeling discriminative global inference. In Proceedings of the International Conference on Semantic Computing (ICSC’07). 597--604.Google ScholarGoogle Scholar
  21. D. Klein, J. Smarr, H. Nguyen, and C. D. Manning. 2003. Named entity recognition with character-level models. In Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL, Volume 4. 180--183. DOI:10.3115/1119176.1119204Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Luo, X. Huang, C.-Y. Lin, and Z. Nie. 2015. Joint named entity recognition and disambiguation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’15). 879--880.Google ScholarGoogle Scholar
  23. D. B. Nguyen, M. Theobald, and G. Weikum. 2016. J-NERD: Joint named entity recognition and disambiguation with rich linguistic features. Trans. Assoc. Comput. Linguist. 4 (2016), 215--229. DOI:10.1162/tacl_a_00094Google ScholarGoogle ScholarCross RefCross Ref
  24. W. Liao and S. Veeramachaneni. 2009. A simple semi-supervised algorithm for named entity recognition. In Proceedings of the NAACL HLT Workshop on Semi-Supervised Learning for Natural Language Processing. 58--65. Retrieved from http://dl.acm.org/citation.cfm?id=1621829.1621837.Google ScholarGoogle Scholar
  25. O. Etzioni et al. 2005. Unsupervised named-entity extraction from the web: An experimental study. Artif. Intell. 165, 1 (2005), 91--134. DOI:10.1016/j.artint.2005.03.001Google ScholarGoogle ScholarCross RefCross Ref
  26. D. Nadeau, P. Turney, and S. Matwin. 2006. Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity. Adv. Artif. Intell. Lecture Notes in Computer Sciences, vol. 4013. Springer, 266--277. DOI:10.1007/11766247_23Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. I. Gallo, E. Binaghi, M. Carullo, and N. Lamberti. 2008. Named entity recognition by neural sliding window. In Proceedings of the 8th IAPR International Workshop on Document Analysis Systems. 567--573. DOI:10.1109/DAS.2008.13Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Passos, V. Kumar, and A. McCallum. 2017. Lexicon infused phrase embeddings for named entity resolution. ArXiv14045367 Cs, Apr. 2014.Google ScholarGoogle Scholar
  29. M. Peters, W. Ammar, C. Bhagavatula, and R. Power. 2017. Semi-supervised sequence tagging with bidirectional language models. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 1756--1765. DOI:10.18653/v1/P17-1161Google ScholarGoogle Scholar
  30. M. Peters et al. 2018. Deep contextualized word representations. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2227--2237. DOI:10.18653/v1/N18-1202Google ScholarGoogle ScholarCross RefCross Ref
  31. M. Rondeau and Y. Su. 2015. Full-rank linear-chain NeuroCRF for sequence labeling. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'15). 5281--5285. DOI:10.1109/ICASSP.2015.7178979Google ScholarGoogle Scholar
  32. M. A. Rondeau and Y. Su. 2015. Recent improvements to NeuroCRFs for named entity recognition. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU’15). 390--396. DOI:10.1109/ASRU.2015.7404821.Google ScholarGoogle Scholar
  33. X. Ma and E. Hovy. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNS-CRF. ArXiv Prepr. ArXiv160301354, 2016.Google ScholarGoogle Scholar
  34. E. Strubell, P. Verga, D. Belanger, and A. McCallum. 2017. Fast and accurate sequence labeling with iterated dilated convolutions. ArXiv170202098 Cs, Feb. 2017.Google ScholarGoogle Scholar
  35. F. Liu, T. Baldwin, and T. Cohn. 2017. Capturing long-range contextual dependencies with memory-enhanced conditional random fields. ArXiv Prepr. ArXiv170903637, 2017.Google ScholarGoogle Scholar
  36. K. Riaz. 2010. Rule-based named entity recognition in Urdu. In Proceedings of the Named Entities Workshop. 126--135. Retrieved from http://dl.acm.org/citation.cfm?id=1870457.1870476.Google ScholarGoogle Scholar
  37. R. Alfred, L. C. Leong, C. K. On, and P. Anthony. 2014. Malay named entity recognition based on rule-based approach. Int. J. Mach. Learn. Comput. 4, 3 (2014), 300.Google ScholarGoogle ScholarCross RefCross Ref
  38. D. M. Bikel, R. Schwartz, and R. M. Weischedel. 1999. An algorithm that learns what's in a name. Mach. Learn. 34, 1--3 (1999), 211--231. DOI:10.1023/A:1007558221122Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. R. Ageishi and T. Miura. 2008. Named entity recognition based on a hidden Markov model in part-of-speech tagging. In Proceedings of the 1st International Conference on the Applications of Digital Information and Web Technologies (ICADIWT’08). 397--402. DOI:10.1109/ICADIWT.2008.4664380Google ScholarGoogle Scholar
  40. A. E. Borthwick. 1999. A Maximum Entropy Approach to Named Entity Recognition. Ph.D. Dissertation. New York University, New York, NY.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. McCallum and W. Li. 2003. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL, Volume 4. 188--191. DOI:10.3115/1119176.1119206Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. G. Fu and K.-K. Luke. 2005. Chinese named entity recognition using lexicalized HMMs. SIGKDD Explor. Newsl. 7, 1 (2005), 19--25. DOI:10.1145/1089815.1089819Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. X. Yu, S. Mayhew, M. Sammons, and D. Roth. 2019. On the strength of character language models for multilingual named entity recognition. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing Association for Computational Linguistics. 3073--3077. Retrieved from https://aclweb.org/anthology/papers/D/D18/D18-1345/.Google ScholarGoogle Scholar
  44. D. Khashabi et al. 2018. Cogcompnlp: Your Swiss army knife for NLP. In Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC’18).Google ScholarGoogle Scholar
  45. S. Strassel and J. Tracey. 2016. Lorelei language packs: Data, tools, and resources for technology development in low resource languages. In Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC’16). 3273--3280.Google ScholarGoogle Scholar
  46. E. Brill. 1995. Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging. Comput. Linguist. 21, 4 (1995), 543--565.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Q. L. L. Buco, J. L. L. Capcap, J. C. A. Hermocilla, C. S. Yumul, R. A. Sagum, and A. G. Pastrana. 2013. The application of transformation-based learning in the development of a named entity recognition system for Filipino text. J. Ind. Intell. Inf. 1, 1 (2013).Google ScholarGoogle Scholar
  48. S. Cucerzan and D. Yarowsky. 2002. Language independent NER using a unified model of internal and contextual evidence. In Proceedings of the 6th Conference on Natural Language Learning, Volume 20. 1--4. DOI:10.3115/1118853.1118860Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. A. Leonandya, B. Distiawan, and N. H. Praptono. 2015. A semi-supervised algorithm for Indonesian named entity recognition. In Proceedings of the 3rd International Symposium on Computational and Business Intelligence (ISCBI’15). 45--50. DOI:10.1109/ISCBI.2015.15Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. J. Straková, M. Straka, and J. Hajič. 2016. Neural networks for featureless named entity recognition in Czech. In Proceedings of the International Conference on Text, Speech, and Dialogue. 173--181.Google ScholarGoogle Scholar
  51. L. Liu et al. 2018. Empower sequence labeling with task-aware neural language model. In Proceedings of the AAAI Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  52. X.-D. Doan, T.-T. Dang, and M. L. Nguyen. 2019. Effectiveness of character language model for Vietnamese named entity recognition. In Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation. Retrieved from https://aclweb.org/anthology/papers/Y/Y18/Y18-1018/.Google ScholarGoogle Scholar
  53. C. Lee. 2017. LSTM-CRF models for named entity recognition. IEICE Trans. Inf. Syst. 100, 4 (2017), 882--887.Google ScholarGoogle ScholarCross RefCross Ref
  54. G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. 2016. Neural architectures for named entity recognition. In Proceedings of NAACL-HLT, Association for Computational Linguistics. 260--270. DOI:10.18653/v1/N16-1030Google ScholarGoogle Scholar
  55. W. Wang, F. Bao, and G. Gao. 2016. Mongolian named entity recognition with bidirectional recurrent neural networks. In Proceedings of the IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI’16). 495--500. DOI:10.1109/ICTAI.2016.0082Google ScholarGoogle Scholar
  56. O. Täckström. 2012. Nudging the envelope of direct transfer methods for multilingual named entity recognition. In Proceedings of the NAACL-HLT Workshop on the Induction of Linguistic Structure. Retrieved from http://dl.acm.org/citation.cfm?id=2390426.2390435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. O. Täckström, R. McDonald, and J. Uszkoreit. 2012. Cross-lingual word clusters for direct transfer of linguistic structure. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Retrieved from http://dl.acm.org/citation.cfm?id=2382029.2382096.Google ScholarGoogle Scholar
  58. L. Qu, G. Ferraro, L. Zhou, W. Hou, and T. Baldwin. 2016. Named entity recognition for novel types by transfer learning. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics. 899--905. DOI:10.18653/v1/D16-1087Google ScholarGoogle Scholar
  59. L. Chen, A. Moschitti, G. Castellucci, A. Favalli, and R. Romagnoli. 2018. Transfer learning for industrial applications of named entity recognition. In Proceedings of the 2nd Workshop on Natural Language for Artificial Intelligence (NL4AI’18) co-located with 17th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2018). 129--140. Retrieved from http://ceur-ws.org/Vol-2244/paper_12.pdf.Google ScholarGoogle Scholar
  60. S. Mayhew, C.-T. Tsai, and D. Roth. 2017. Cheap translation for cross-lingual named entity recognition. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics. 2536--2545. DOI:10.18653/v1/D17-1269Google ScholarGoogle Scholar
  61. R. Murthy, M. M. Khapra, and P. Bhattacharyya. 2018. Improving NER tagging performance in low-resource languages via multilingual learning. ACM Trans. Asian Low-Resour. Lang. Inf. Proc. 18, 2 (2018), 9:1--9:20. DOI:10.1145/3238797Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. X. Feng, X. Feng, B. Qin, Z. Feng, and T. Liu. 2018. Improving low resource named entity recognition using cross-lingual knowledge transfer. In Proceedings of the 27th International Joint Conference on Artificial Intelligence. 4071--4077. Retrieved from http://dl.acm.org/citation.cfm?id=3304222.3304336.Google ScholarGoogle Scholar
  63. P. Cao, Y. Chen, K. Liu, J. Zhao, and S. Liu. 2018. Adversarial transfer learning for Chinese named entity recognition with self-attention mechanism. 182--192. Retrieved from https://aclweb.org/anthology/papers/D/D18/D18-1017/.Google ScholarGoogle Scholar
  64. A. Rahimi, Y. Li, and T. Cohn. 2019. Massively multilingual transfer for NER. In Proceedings of the 57th Conference of the Association for Computational Linguistics. 151--164.Google ScholarGoogle Scholar
  65. A. Johnson, P. Karanasou, J. Gaspers, and D. Klakow. 2019. Cross-lingual transfer learning for Japanese named entity recognition. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers). 182--189.Google ScholarGoogle Scholar
  66. A. Bharadwaj, D. Mortensen, C. Dyer, and J. Carbonell. 2016. Phonologically aware neural model for named entity recognition in low resource transfer settings. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 1462--1472.Google ScholarGoogle Scholar
  67. J. Xie, Z. Yang, G. Neubig, N. A. Smith, and J. G. Carbonell. 2018. Neural cross-lingual named entity recognition with minimal resources. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 369--379. DOI:10.18653/v1/D18-1034Google ScholarGoogle Scholar
  68. Z. Nasar, S. W. Jaffry, and M. K. Malik. 2018. Information extraction from scientific articles: A survey. Scientometrics. DOI:10.1007/s11192-018-2921-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. M. Abdelmagid, M. Himmat, and A. Ahmed. 2014. Survey on information extraction from chemical compound literatures: Techniques and challenges. J. Theor. Appl. Inf. Technol. 67, 2 (2014), 284--289.Google ScholarGoogle Scholar
  70. G. Duck, G. Nenadic, M. Filannino, A. Brass, D. L. Robertson, and R. Stevens. 2016. A survey of bioinformatics database and software usage through mining the literature. PLoS One 11, 6 (2016), e0157989. DOI:10.1371/journal.pone.0157989Google ScholarGoogle ScholarCross RefCross Ref
  71. B. Shickel, P. Tighe, A. Bihorac, and P. Rashidi. 2017. Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. ArXiv Prepr. ArXiv170603446, 2017.Google ScholarGoogle Scholar
  72. T. Eftimov, B. Koroušić Seljak, and P. Korošec. 2017. A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations. PLoS One 12, 6 (2017), e0179488. DOI:10.1371/journal.pone.0179488Google ScholarGoogle ScholarCross RefCross Ref
  73. D. M. de Oliveira, A. H. F. Laender, A. Veloso, and A. S. da Silva. 2013. FS-NER: A lightweight filter-stream approach to named entity recognition on Twitter data. In Proceedings of the 22nd International Conference on World Wide Web. 597--604. DOI:10.1145/2487788.2488003Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. D. Bonadiman, A. Severyn, and A. Moschitti. 2015. Deep neural networks for named entity recognition in Italian. In Proceedings of the 2nd Italian Conference on Computational Linguistics (CLiC It’15).Google ScholarGoogle Scholar
  75. J. Xu, H. He, X. Sun, X. Ren, and S. Li. 2018. Cross-domain and semisupervised named entity recognition in Chinese social media: A unified model. IEEE/ACM Trans. Audio Speech Lang. Proc. 26, 11 (2018), 2142--2152. DOI:10.1109/TASLP.2018.2856625Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Z. Zhao et al. 2016. ML-CNN: A novel deep learning based disease named entity recognition architecture. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM’16). 794--794. DOI:10.1109/BIBM.2016.7822625Google ScholarGoogle Scholar
  77. J. Li et al. 2016. BioCreative V CDR task corpus: A resource for chemical disease relation extraction. Datab.- J. Biol. Datab. Curat. May (2016). DOI:10.1093/database/baw068Google ScholarGoogle Scholar
  78. R. I. Doğan, R. Leaman, and Z. Lu. 2014. NCBI disease corpus: A resource for disease name recognition and concept normalization. J. Biomed. Inform. 47 (2014), 1--10. DOI:10.1016/j.jbi.2013.12.006Google ScholarGoogle ScholarCross RefCross Ref
  79. X. Dong, L. Qian, Y. Guan, L. Huang, Q. Yu, and J. Yang. 2016. A multiclass classification method based on deep learning for named entity recognition in electronic medical records. In Proceedings of the New York Scientific Data Summit (NYSDS’16). 1--10. DOI:10.1109/NYSDS.2016.7747810Google ScholarGoogle Scholar
  80. L. Wang, S. Li, Q. Yan, and G. Zhou. 2018. Domain-specific named entity recognition with document-level optimization. ACM Trans. Asian Low-Resour. Lang. Inf. Proc. 17, 4 (2018), 33:1--33:15. DOI:10.1145/3213544Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. J. R. Finkel and C. D. Manning. 2009. Nested named entity recognition. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Volume 1. 141--150. Retrieved from http://dl.acm.org/citation.cfm?id=1699510.1699529.Google ScholarGoogle Scholar
  82. W. Lu and D. Roth. 2015. Joint mention extraction and classification with mention hypergraphs. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 857--867.Google ScholarGoogle Scholar
  83. A. Katiyar and C. Cardie. 2018. Nested named entity recognition revisited. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 861--871.Google ScholarGoogle Scholar
  84. M. Ju, M. Miwa, and S. Ananiadou. 2018. A neural layered model for nested named entity recognition. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 1446--1459.Google ScholarGoogle Scholar
  85. K. Mai et al. 2018. An empirical study on fine-grained named entity recognition. In Proceedings of the 27th International Conference on Computational Linguistics. 711--722.Google ScholarGoogle Scholar
  86. N. Reimers and I. Gurevych. 2017. Optimal hyperparameters for deep LSTM-Networks for sequence labeling tasks. Retrieved from https://arxiv.org/abs/1707.06799.Google ScholarGoogle Scholar
  87. S. Zhang and N. Elhadad. 2013. Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts. J. Biomed. Inform. 46, 6 (2013). DOI:10.1016/j.jbi.2013.08.004Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. F. Li, M. Zhang, G. Fu, and D. Ji. 2017. A neural joint model for entity and relation extraction from biomedical text. BMC Bioinf. 18 (2017). DOI:10.1186/s12859-017-1609-9Google ScholarGoogle Scholar
  89. N. Bach and S. Badaskar. 2007. A review of relation extraction. Unpublished Report. Retrieved from www.cs.cmu.edu/∼nbach/papers/A-survey-on-Relation-Extraction.pdf.Google ScholarGoogle Scholar
  90. N. Konstantinova. 2014. Review of relation extraction methods: What is new out there? In Analysis of Images, Social Networks and Texts. 15--28. DOI:10.1007/978-3-319-12580-0_2Google ScholarGoogle Scholar
  91. N. Asghar. 2016. Automatic extraction of causal relations from natural language texts: A comprehensive survey. ArXiv Prepr. ArXiv160507895, 2016.Google ScholarGoogle Scholar
  92. S. Brin. 1998. Extracting patterns and relations from the world wide web. In Proceedings of the International Workshop on the World Wide Web and Databases. 172--183.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. E. Agichtein and L. Gravano. 2000. Snowball: Extracting relations from large plain-text collections. In Proceedings of the 5th ACM Conference on Digital Libraries. 85--94.Google ScholarGoogle Scholar
  94. O. Etzioni et al. 2004. Web-scale information extraction in knowitall:(preliminary results). In Proceedings of the 13th International Conference on World Wide Web. 100--110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. 2007. Open information extraction from the web. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’07). 2670--2676.Google ScholarGoogle Scholar
  96. R. McDonald, F. Pereira, S. Kulick, S. Winters, Y. Jin, and P. White. 2005. Simple algorithms for complex relation extraction with applications to biomedical IE. In Proceedings of the 43rd Meeting on Association for Computational Linguistics. 491--498. DOI:10.3115/1219840.1219901Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. S. Kumar. 2017. A survey of deep learning methods for relation extraction. ArXiv170503645 Cs, May 2017.Google ScholarGoogle Scholar
  98. A. Smirnova and P. Cudré-Mauroux. 2018. Relation extraction using distant supervision: A survey. ACM Comput. Surv. 51, 5 (2018), 106:1--106:35. DOI:10.1145/3241741Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. K. Fundel, R. Küffner, and R. Zimmer. 2006. RelEx—Relation extraction using dependency parse trees. Bioinformatics 23, 3 (2006), 365--371.Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. C. Nédellec. 2005. Learning language in logic-genic interaction extraction challenge. In Proceedings of the 4th Learning Language in Logic Workshop (LLL’05). 31--37.Google ScholarGoogle Scholar
  101. Kamel Nebhi. 2013. A rule-based relation extraction system using DBpedia and syntactic parsing. In Proceedings of the 2013th International Conference on NLP 8 DBpedia (NLP-DBPEDIA'13), Vol. 1064. 74--79. Retrieved from http://dl.acm.org/citation.cfm?id=2874479.2874487.Google ScholarGoogle Scholar
  102. S. Rosset, C. Grouin, K. Fort, O. Galibert, J. Kahn, and P. Zweigenbaum. 2012. Structured named entities in two distinct press corpora: Contemporary broadcast news and old newspapers. In Proceedings of the 6th Linguistic Annotation Workshop. 40--48.Google ScholarGoogle Scholar
  103. G. Leroy and H. Chen. 2001. Filling preposition-based templates to capture information from medical. In Proceedings of the Pacific Symposium on Biocomputing.Google ScholarGoogle Scholar
  104. C. Blaschke and A. Valencia. 2001. The potential use of SUISEKI as a protein interaction discovery tool. Genome Inform. 12 (2001), 123--134.Google ScholarGoogle Scholar
  105. N. Kambhatla. 2004. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations. In Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions. 22--25. DOI:10.3115/1219044.1219066Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. A. Ratnaparkhi. 1999. Learning to parse natural language with maximum entropy models. Mach. Learn. 34, 1--3 151--175. DOI:10.1023/A:1007502103375Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Z. GuoDong, S. Jian, Z. Jie, and Z. Min. 2005. Exploring various knowledge in relation extraction. In Proceedings of the 43rd Meeting on Association for Computational Linguistics. 427--434. DOI:10.3115/1219840.1219893Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Y. S. Chan and D. Roth. 2011. Exploiting syntactico-semantic structures for relation extraction. In Proceedings of the 49th Meeting of the Association for Computational Linguistics: Human Language Technologies, Volume 1. 551--560. Retrieved from http://dl.acm.org/citation.cfm?id=2002472.2002542.Google ScholarGoogle Scholar
  109. D. Zelenko, C. Aone, and A. Richardella. 2002. Kernel methods for relation extraction. In Proceedings of the ACL Conference on Empirical Methods in Natural Language Processing, Volume 10. 71--78. DOI:10.3115/1118693.1118703Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. A. Culotta and J. Sorensen. 2004. Dependency tree kernels for relation extraction. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. 423--429. DOI:10.3115/1218955.1219009Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Z. Min, Z. GuoDong, and A. Aiti. 2008. Exploring syntactic structured features over parse trees for relation extraction using kernel methods. Inf. Proc. Manag. 44, 2 (2008), 687--701. DOI:10.1016/j.ipm.2007.07.013Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. K. Tymoshenko and C. Giuliano. 2017. FBK-IRST: Semantic relation extraction using cyc. In Proceedings of the 5th International Workshop on Semantic Evaluation. 214--217. Retrieved from http://dl.acm.org/citation.cfm?id=1859664.1859711.Google ScholarGoogle Scholar
  113. Z. Zhang. 2004. Weakly-supervised relation classification for information extraction. In Proceedings of the 13th ACM International Conference on Information and Knowledge Management. 581--588.Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. P. Pantel and M. Pennacchiotti. 2006. Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th Meeting of the Association for Computational Linguistics. 113--120.Google ScholarGoogle Scholar
  115. A. Culotta, A. McCallum, and J. Betz. 2006. Integrating probabilistic extraction models and data mining to discover relations and patterns in text. In Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. 296--303. DOI:10.3115/1220835.1220873Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr, and T. M. Mitchell. 2010. Coupled semi-supervised learning for information extraction. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. 101--110. DOI:10.1145/1718487.1718501Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. S. De Saeger et al. 2011. Relation acquisition using word classes and partial patterns. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. Retrieved from http://dl.acm.org/citation.cfm?id=2145432.2145524.Google ScholarGoogle Scholar
  118. K.-W. Chang, S. W. Yih, B. Yang, and C. Meek. 2014. Typed tensor decomposition of knowledge bases for relation extraction. Retrieved from https://www.microsoft.com/en-us/research/publication/typed-tensor-decomposition-of-knowledge-bases-for-relation-extraction/.Google ScholarGoogle Scholar
  119. S. Riedel, L. Yao, A. McCallum, and B. M. Marlin. 2013. Relation extraction with matrix factorization and universal schemas. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (HLT-NAACL’13). 74--84.Google ScholarGoogle Scholar
  120. M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Distant supervision for relation extraction without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, Volume 2. Retrieved from http://dl.acm.org/citation.cfm?id=1690219.1690287.Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. S. Riedel, L. Yao, and A. McCallum. 2010. Modeling relations and their mentions without labeled text. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 148--163. DOI:10.1007/978-3-642-15939-8_10Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. M. Wick, K. Rohanimanesh, K. Bellare, A. Culotta, and A. McCallum. 2011. SampleRank: Training factor graphs with atomic gradients. In Proceedings of the 28th International Conference on Machine Learning. 777--784. Retrieved from http://dl.acm.org/citation.cfm?id=3104482.3104580.Google ScholarGoogle Scholar
  123. S. Takamatsu, I. Sato, and H. Nakagawa. 2012. Reducing wrong labels in distant supervision for relation extraction. In Proceedings of the 50th Meeting of the Association for Computational Linguistics: Long Papers, Volume 1. 721--729. Retrieved from http://dl.acm.org/citation.cfm?id=2390524.2390626.Google ScholarGoogle Scholar
  124. H. Zhang and Y. Zhao. 2013. Improving few occurrence feature performance in distant supervision for relation extraction. In Advanced Data Mining and Applications, H. Motoda, Z. Wu, L. Cao, O. Zaiane, M. Yao, and W. Wang (Eds). Springer Berlin, 414--422.Google ScholarGoogle Scholar
  125. J. Chen, D. Ji, C. L. Tan, and Z. Niu. 2005. Unsupervised feature selection for relation extraction. In Companion Volume to the Proceedings of Second International Joint Conference on Natural Language Processing, [Online]. Retrieved from https://www.aclweb.org/anthology/I05-2045.Google ScholarGoogle Scholar
  126. S. Sekine. 2005. Automatic paraphrase discovery based on context and keywords between NE pairs. In Proceedings of the International Workshop on Paraphrasing (IWP’05). 4--6.Google ScholarGoogle Scholar
  127. D. Downey, S. Schoenmackers, and O. Etzioni. 2017. Sparse information extraction: Unsupervised language models to the rescue. In Proceedings of the Meeting of the Association for Computational Linguistics. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.8780.Google ScholarGoogle Scholar
  128. B. Min, S. Shi, R. Grishman, and C.-Y. Lin. 2012. Towards large-scale unsupervised relation extraction from the web. Int. J. Seman. Web Inf. Syst. 8, 3 (2012), 1--23. DOI:10.4018/jswis.2012070101Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. D. Roth and W. Yih. 2007. Global inference for entity and relation identification via a linear programming formulation. In Introduction to Statistical Relational Learning. The MIT Press, Cambridge, MA, 553--580.Google ScholarGoogle Scholar
  130. R. J. Kate and R. J. Mooney. 2010. Joint entity and relation extraction using card-pyramid parsing. In Proceedings of the 14th Conference on Computational Natural Language Learning. Retrieved from http://dl.acm.org/citation.cfm?id=1870568.1870592.Google ScholarGoogle Scholar
  131. X. Yu and W. Lam. 2010. Jointly identifying entities and extracting relations in encyclopedia text via a graphical model approach. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters. 1399--1407. Retrieved from http://dl.acm.org/citation.cfm?id=1944566.1944726.Google ScholarGoogle Scholar
  132. M. Miwa and Y. Sasaki. 2014. Modeling joint entity and relation extraction with table representation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’14). 1858--1869.Google ScholarGoogle Scholar
  133. J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12 (2011), 2121--2159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. M. Collins. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Volume 10. 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. A. Mejer and K. Crammer. 2010. Confidence in structured-prediction using confidence-weighted models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 971--981.Google ScholarGoogle Scholar
  136. K. Crammer, A. Kulesza, and M. Dredze. 2009. Adaptive regularization of weight vectors. In Proceedings of the Conference on Advances in Neural Information Processing Systems. 414--422.Google ScholarGoogle Scholar
  137. M.-W. Chang and W. Yih. 2013. Dual coordinate descent algorithms for efficient large margin structured prediction. Trans. Assoc. Comput. Linguist. 1 (2013), 207--218.Google ScholarGoogle ScholarCross RefCross Ref
  138. R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. 2012. Semantic compositionality through recursive matrix-vector spaces. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 1201--1211.Google ScholarGoogle Scholar
  139. D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, et al. 2014. Relation classification via convolutional deep neural network. In Proceedings of the International Conference on Computational Linguistics (COLING’14). 2335--2344.Google ScholarGoogle Scholar
  140. L. Wang, Z. Cao, G. de Melo, and Z. Liu. 2016. Relation classification via multi-level attention CNNs. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 1298--1307. DOI:10.18653/v1/P16-1123Google ScholarGoogle Scholar
  141. S. Takase, N. Okazaki, and K. Inui. 2016. Modeling semantic compositionality of relational patterns. Eng. Appl. Artif. Intell. 50, C (2016), 256--264. DOI:10.1016/j.engappai.2016.01.027Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. J. Liu, H. Ren, M. Wu, J. Wang, and H.-J. Kim. 2018. Multiple relations extraction among multiple entities in unstructured text. Soft Comput. 22, 13 (2018), 4295--4305. DOI:10.1007/s00500-017-2852-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. X. Zhang, P. Li, W. Jia, and H. Zhao. 2019. Multi-labeled relation extraction with attentive capsule network. In Proceedings of the AAAI Conference on Artificial Intelligence. 33 (2019), 7484--7491.Google ScholarGoogle Scholar
  144. D. He, H. Zhang, W. Hao, R. Zhang, and K. Cheng. 2017. A customized attention-based long short-term memory network for distant supervised relation extraction. Neural Comput. 29, 7 (2017), 1964--1985. DOI:10.1162/NECO_a_00970Google ScholarGoogle ScholarCross RefCross Ref
  145. C. Ru, J. Tang, S. Li, S. Xie, and T. Wang. 2018. Using semantic similarity to reduce wrong labels in distant supervision for relation extraction. Inf. Proc. Manag. 54, 4 (2018), 593--608. DOI:10.1016/j.ipm.2018.04.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. J. Qu, D. Ouyang, W. Hua, Y. Ye, and X. Li. 2018. Distant supervision for neural relation extraction integrated with word attention and property features. Neural Netw. 100, C (2018), 59--69. DOI:10.1016/j.neunet.2018.01.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Y. Li, Z. Zhong, and N. Jing. 2018. Multi-path convolutional neural network for distant supervised relation extraction. In Proceedings of the 2nd International Conference on Computer Science and Application Engineering. 119:1--119:7. DOI:10.1145/3207677.3278063Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. Q. Li and H. Ji. 2014. Incremental joint extraction of entity mentions and relations. In Proceedings of the Meeting of the Association for Computational Linguistics. 402--412.Google ScholarGoogle Scholar
  149. M. Miwa and M. Bansal. 2016. End-to-end relation extraction using lstms on sequences and tree structures. ArXiv Prepr. ArXiv160100770, 2016.Google ScholarGoogle Scholar
  150. S. Di, Y. Shen, and L. Chen. 2019. Relation extraction via domain-aware transfer learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery 8 Data Mining. 1348--1357. DOI:10.1145/3292500.3330890Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. X. Ling and D. S. Weld. 2012. Fine-grained entity recognition. In Proceedings of the AAAI Conference on Artificial Intelligence. 94--100.Google ScholarGoogle Scholar
  152. T. Liu, X. Zhang, W. Zhou, and W. Jia. 2018. Neural relation extraction via inner-sentence noise reduction and transfer learning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2195--2204. DOI:10.18653/v1/D18-1243Google ScholarGoogle Scholar
  153. S. Yang, W. Lu, D. Yang, X. Li, C. Wu, and B. Wei. 2017. KeyphraseDS: Automatic generation of survey by exploiting keyphrase information. Neurocomputing 224 (2017), 58--70. DOI:10.1016/j.neucom.2016.10.052Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. T. Hasegawa, S. Sekine, and R. Grishman. 2004. Discovering relations among named entities from large corpora. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. 415--422. DOI:10.3115/1218955.1219008Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. L. Yao, S. Riedel, and A. McCallum. 2010. Collective cross-document relation extraction without labelled data. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 1013--1023. Retrieved from http://dl.acm.org/citation.cfm?id=1870658.1870757.Google ScholarGoogle Scholar
  156. Y. Cao, D. Chen, H. Li, and P. Luo. 2019. Nested relation extraction with iterative neural network. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 1001--1010. DOI:10.1145/3357384.3358003Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. 2017. Efficient processing of deep neural networks: A tutorial and survey. ArXiv Prepr. ArXiv170309039, 2017.Google ScholarGoogle Scholar

Index Terms

  1. Named Entity Recognition and Relation Extraction: State-of-the-Art

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 54, Issue 1
      January 2022
      844 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/3446641
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 February 2021
      • Accepted: 1 October 2020
      • Revised: 1 August 2020
      • Received: 1 February 2019
      Published in csur Volume 54, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format