skip to main content
10.1145/2933057.2933114acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
research-article
Best Student Paper

The Greedy Spanner is Existentially Optimal

Published:25 July 2016Publication History

ABSTRACT

The greedy spanner is arguably the simplest and most well-studied spanner construction. Experimental results demonstrate that it is at least as good as any other spanner construction, in terms of both the size and weight parameters. However, a rigorous proof for this statement has remained elusive. In this work we fill in the theoretical gap via a surprisingly simple observation: The greedy spanner is existentially optimal (or existentially near-optimal) for several important graph families. Focusing on the weight parameter, the state-of-the-art spanner constructions for both general graphs (due to Chechik and Wulff-Nilsen [SODA'16]) and doubling metrics (due to Gottlieb [FOCS'15]) are complex. Plugging our observation on these results, we conclude that the greedy spanner achieves near-optimal weight guarantees for both general graphs and doubling metrics, thus resolving two longstanding conjectures in the area. Further, we observe that approximate-greedy algorithms are existentially near-optimal as well. Consequently, we provide an O(n log n)-time construction of (1+epsilon)-spanners for doubling metrics with constant lightness and degree. Our construction improves Gottlieb's construction, whose runtime is O(n log2 n) and whose number of edges and degree are unbounded, and remarkably, it matches the state-of-the-art Euclidean result (due to Gudmundsson et al. [SICOMP'02]) in all the involved parameters (up to dependencies on epsilon and the dimension).

References

  1. I. Althfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81--100, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. Awerbuch. Communication-time trade-offs in network synchronization. In Proc. of 4th PODC, pages 272--276, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of communication protocols. In Proc. of 9th PODC, pages 177--187, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Awerbuch, A. Baratz, and D. Peleg. Efficient broadcast and light-weight spanners. Manuscript, 1991.Google ScholarGoogle Scholar
  5. Y. Bartal, A. Filtser, and O. Neiman. On notions of distortion and an almost minimum spanning tree with constant average distortion. In Proc. of 27th SODA, pages 873--882, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Ben-Shimol, A. Dvir, and M. Segal. SPLAST: a novel approach for multicasting in mobile wireless ad hoc networks. In Proc. of 15th PIMRC, pages 1011--1015, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and M. H. M. Smid. Computing the greedy spanner in near-quadratic time. Algorithmica, 58(3):711--729, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vahdat. Opus: an overlay peer utility service. In Prof. of 5th OPENARCH, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  9. H. T.-H. Chan and A. Gupta. Small hop-diameter sparse spanners for doubling metrics. In Proc. of 17th SODA, pages 70--78, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On hierarchical routing in doubling metrics. In Proc. of 16th SODA, pages 762--771, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T.-H. H. Chan, M. Li, L. Ning, and S. Solomon. New doubling spanners: Better and simpler. In Proc. of 40th ICALP, pages 315--327, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph spanners. In Proc. of 8th SOCG, pages 192--201, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Chechik and C. Wulff-Nilsen. Near-optimal light spanners. In Proc. of 27th SODA, pages 883--892, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. P. Chew. There is a planar graph almost as good as the complete graph. In Proc. of 2nd SOCG, pages 169--177, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. Cohen. Fast algorithms for constructing $t$-spanners and paths with stretch $t$. In Proc. of 34th FOCS, pages 648--658, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong. Performance-driven global routing for cell based ics. In Proc. of 9th ICCD, pages 170--173, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong. Provably good algorithms for performance-driven global routing. In Proc. of 5th ISCAS, pages 2240--2243, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong. Provably good performance-driven global routing. IEEE Trans. on CAD of Integrated Circuits and Sys., 11(6):739--752, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. G. Das, P. J. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional Euclidean space. In Proc. of 9th SOCG, pages 53--62, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comput. Geometry Appl., 7(4):297--315, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  21. E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction decomposition. Combinatorica, 30(5):533--552, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Elkin. Computing almost shortest paths. ACM Transactions on Algorithms, 1(2):283--323, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Elkin, O. Neiman, and S. Solomon. Light spanners. In Proc. of 41th ICALP, pages 442--452, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Elkin and S. Solomon. Fast constructions of light-weight spanners for general graphs. In Proc. of 24th SODA, pages 513--525, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Elkin and J. Zhang. Efficient algorithms for constructing (1Google ScholarGoogle Scholar
  26. epsilon, beta)-spanners in the distributed and streaming models. Distributed Computing, 18(5):375--385, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Erd\Hos. Extremal problems in graph theory. In Proc. of Sympos. Smolenice, pages 29--36, 1964.Google ScholarGoogle Scholar
  28. M. Farshi. A theoretical and experimental study of geometric networks. PhD thesis, 2008.Google ScholarGoogle Scholar
  29. M. Farshi and J. Gudmundsson. Experimental study of geometric pht-spanners. In Proc. of 13th ESA, pages 556--567, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the streaming model: the value of space. In Proc. of 16th SODA, pages 745--754, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and applications. In Proc. of 20th SoCG, pages 190--199, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Gottlieb. A light metric spanner. In Proc. of 56th FOCS, pages 759--772, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. L. Gottlieb and L. Roditty. Improved algorithms for fully dynamic geometric spanners and geometric routing. In Proc. of 19th SODA, pages 591--600, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. L. Gottlieb and L. Roditty. Improved algorithms for fully dynamic geometric spanners and geometric routing. In Proc. of 19th SODA, pages 591--600, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. L. Gottlieb and L. Roditty. An optimal dynamic spanner for doubling metric spaces. In Proc. of 16th ESA, pages 478--489, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. Grigni. Approximate TSP in graphs with forbidden minors. In Proc. of 27th ICALP, pages 869--877, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Grigni and H. Hung. Light spanners in bounded pathwidth graphs. In Proc. of 37th MFCS, pages 467--477, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Grigni and P. Sissokho. Light spanners and approximate TSP in weighted graphs with forbidden minors. In Proc. of 13th SODA, pages 852--857, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput., 31(5):1479--1500, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In Proc. of 44th FOCS, pages 534--543, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput., 35(5):1148--1184, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput., 35(5):1148--1184, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. H. Hung. Light spanner and monotone tree. CoRR, abs/1207.3807, 2012.Google ScholarGoogle Scholar
  44. P. N. Klein. A linear-time approximation scheme for planar weighted TSP. In Proc. of 46th FOCS, pages 647--657, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. D. Kostic and A. Vahdat. Latency versus cost optimizations in hierarchical overlay networks. Technical report, Duke University, (CS-2001-04), 2002.Google ScholarGoogle Scholar
  46. G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. D. Peleg. Proximity-preserving labeling schemes and their applications. In Proc. of 25th WG, pages 30--41, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia, PA, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. D. Peleg and A. Sch$\ddot\mboxa$ffer. Graph spanners. J. Graph Theory, 13(1):99--116, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  50. D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J. Comput., 18(4):740--747, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. J. ACM, 36(3):510--530, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Y. Rabinovich and R. Raz. Lower bounds on the distortion of embedding finite metric spaces in graphs. Discrete & Computational Geometry, 19(1):79--94, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  53. L. Roditty. Fully dynamic geometric spanners. In Proc. of 23rd SoCG, pages 373--380, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of approximate distance oracles and spanners. In Proc. of 32nd ICALP, pages 261--272, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proc. of 32nd ESA, pages 580--591, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  56. F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Approximating the single-sink link-installation problem in network design. SIAM Journal on Optimization, 11(3):595--610, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. H. Shpungin and M. Segal. Near optimal multicriteria spanner constructions in wireless ad-hoc networks. IEEE/ACM Transactions on Networking, 18(6):1963--1976, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. H. M. Smid. The weak gap property in metric spaces of bounded doubling dimension. In Proc. of Efficient Algorithms, pages 275--289, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. S. Solomon. From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics. In Proc. of 46th STOC, pages 363--372, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Thorup and U. Zwick. Approximate distance oracles. In Proc. of 33rd STOC, pages 183--192, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Thorup and U. Zwick. Compact routing schemes. In Proc. of 13th SPAA, pages 1--10, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. J. Vogel, J. Widmer, D. Farin, M. Mauve, and W. Effelsberg. Priority-based distribution trees for application-level multicast. In Proc. of 2nd NETGAMES, pages 148--157, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. P. von Rickenbach and R. Wattenhofer. Gathering correlated data in sensor networks. In Proc. of DIALM-POMC, pages 60--66, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. B. Y. Wu, K. Chao, and C. Y. Tang. Light graphs with small routing cost. Networks, 39(3):130--138, 2002.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The Greedy Spanner is Existentially Optimal

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      PODC '16: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing
      July 2016
      508 pages
      ISBN:9781450339643
      DOI:10.1145/2933057

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      PODC '16 Paper Acceptance Rate40of149submissions,27%Overall Acceptance Rate740of2,477submissions,30%

      Upcoming Conference

      PODC '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader