skip to main content
10.1145/2930889.2930904acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Fast Computation of the Nth Term of an Algebraic Series over a Finite Prime Field

Published:20 July 2016Publication History

ABSTRACT

We address the question of computing one selected term of an algebraic power series. In characteristic zero, the best algorithm currently known for computing the~Nth coefficient of an algebraic series uses differential equations and has arithmetic complexity quasi-linear in √N. We show that over a prime field of positive characteristic p, the complexity can be lowered to O(log N). The mathematical basis for this dramatic improvement is a classical theorem stating that a formal power series with coefficients in a finite field is algebraic if and only if the sequence of its coefficients can be generated by an automaton. We revisit and enhance two constructive proofs of this result for finite prime fields. The first proof uses Mahler equations, whose sizes appear to be prohibitively large. The second proof relies on diagonals of rational functions; we turn it into an efficient algorithm, of complexity linear in log N and quasi-linear in p.

References

  1. J.-P. Allouche and J. Shallit. The ring of k-regular sequences. Theoret. Comput. Sci., 98(2):163--197, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J.-P. Allouche and J. Shallit. Automatic sequences. Cambridge University Press, 2003. Theory, applications, generalizations. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Bostan, F. Chyzak, G. Lecerf, B. Salvy, and É. Schost. Differential equations for algebraic functions. In ISSAC'07, pages 25--32. ACM Press, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM Journal on Computing, 36(6):1777--1806, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Inform., 28(7):693--701, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. Christol. Éléments algébriques. In Groupe de travail d'Analyse Ultra-métrique (1ère année : 1973/74), number 14, 10 pp. Secrétariat Mathématique, Paris, 1974.Google ScholarGoogle Scholar
  7. G. Christol. Ensembles presque periodiques k-reconnaissables. Theoret. Comput. Sci., 9(1):141--145, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  8. G. Christol, T. Kamae, M. Mendès France, and G. Rauzy. Suites algébriques, automates et substitutions. Bull. Soc. Math. France, 108(4):401--419, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. V. Chudnovsky and G. V. Chudnovsky. On expansion of algebraic functions in power and Puiseux series. I. J. Complexity, 2(4):271--294, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. V. Chudnovsky and G. V. Chudnovsky. Approximations and complex multiplication according to Ramanujan. In Ramanujan revisited (Urbana-Champaign, 1987), pages 375--472. 1988.Google ScholarGoogle Scholar
  11. D. V. Chudnovsky and G. V. Chudnovsky. Computer algebra in the service of mathematical physics and number theory. In Computers in mathematics (Stanford, 1986), volume 125 of Lecture Notes in Pure and Appl. Math., pages 109--232. 1990.Google ScholarGoogle Scholar
  12. L. Comtet. Calcul pratique des coefficients de Taylor d'une fonction algébrique. Enseignemen Math., 10:267--270, 1964.Google ScholarGoogle Scholar
  13. P. Dumas. Récurrences mahlériennes, suites automatiques, études asymptotiques. PhD thesis, Univ. Bordeaux I, 1993. Available at https://tel.archives-ouvertes.fr/tel-00614660.Google ScholarGoogle Scholar
  14. C. M. Fiduccia. An efficient formula for linear recurrences. SIAM J. Comput., 14(1):106--112, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Furstenberg. Algebraic functions over finite fields. J. Algebra, 7:271--277, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  16. F. L. Gall. Powers of tensors and fast matrix multiplication. In ISSAC'14, pages 296--303, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J.gathenvon zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, third edition, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. http://arxiv.org/abs/1407.3361, 2014.Google ScholarGoogle Scholar
  19. H. T. Kung and J. F. Traub. All algebraic functions can be computed fast. J. Assoc. Comput. Mach., 25(2):245--260, 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. C. P. Miller and D. J. Spencer Brown. An algorithm for evaluation of remote terms in a linear recurrence sequence. Computer Journal, 9:188--190, 1966.Google ScholarGoogle ScholarCross RefCross Ref
  21. K. Nishioka. Mahler Functions and Transcendence. Number 1631 in Lecture Notes in Mathematics. Springer, Berlin, 1996.Google ScholarGoogle Scholar
  22. E. Rowland and R. Yassawi. Automatic congruences for diagonals of rational functions. J. Théor. Nombres Bordeaux, 27(1):245--288, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Informat., 7:395--398, 1977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Storjohann. High-order lifting and integrality certification. J. Symb. Comp., 36(3--4):613--648, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast Computation of the Nth Term of an Algebraic Series over a Finite Prime Field

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISSAC '16: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation
      July 2016
      434 pages
      ISBN:9781450343800
      DOI:10.1145/2930889

      Copyright © 2016 ACM

      Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 July 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader