skip to main content
10.1145/1377676.1377721acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Testing contractibility in planar rips complexes

Published:09 June 2008Publication History

ABSTRACT

The (Vietoris-)Rips complex of a discrete point-set P is an abstract simplicial complex in which a subset of P defines a simplex if and only if the diameter of that subset is at most 1. We describe an efficient algorithm to determine whether a given cycle in a planar Rips complex is contractible. Our algorithm requires O(m log n) time to preprocess a set of n points in the plane in which m pairs have distance at most 1; after preprocessing, deciding whether a cycle of k Rips edges is contractible requires O(k) time. We also describe an algorithm to compute the shortest non-contractible cycle in a planar Rips complex in O(n2log n + mn) time.

References

  1. M. A. Bender and M. Farach-Colton. The LCA problem revisited. phProc 4th Latin American Symp. Theoret. Informatics (LATIN), 88--94, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Bespamyatnikh. Computing homotopic shortest paths in the plane. phProc. 14th Annu. ACM--SIAM Sympos. Discrete Algorithms, 609--617, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Bespamyatnikh. Encoding homotopy of paths in the plane. phProc. LATIN 2004: Theoretical Infomatics, 329--338, 2004. Lect. Notes Comput. Sci. 2976, Springer-Verlag.Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Cabello. Many distances in planar graphs. Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, 1213--1220, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Testing homotopy for paths in the plane. Discrete Comput. Geom. 31(1):61--81, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Cabello and B. Mohar. Finding shortest non-separating and non-contractible cycles for topologically embedded graphs. Discrete Comput. Geom. 37(2):213--235, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. Carlsson, G. Carlsson, and V. de Silva. An algebraic topological method for feature identification. Intl. J. Comput. Geom. Appl. 16(4):291--314, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  8. G. Carlsson. Persistent homology and the analysis of high dimensional data. Presentation at the Symposium on the Geometry of Very Large Data Sets, Fields Institute for Research in Mathematical Sciences, February 24, 2005. http://comptop.stanford.edu/preprints/ottawa.pdf.Google ScholarGoogle Scholar
  9. G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local behaevior of spaces of natural images. Preprint, 2006.Google ScholarGoogle Scholar
  10. G. Carlsson, A. Zomorodian, A. Collins, and L. J. Guibas. Persistence barcodes for shapes. Int. J. Shape Modeling 11(2):149--187, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  11. E. W. Chambers and S. Cabello. Multiple source shortest paths in a genus g graph. phProc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 89--97, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. W. Chambers, É. Colin de Verdière, J. Erickson, F. Lazarus, and K. Whittlesey. Splitting (complicated) surfaces is hard. Proc. 22nd Ann. Symp. Comput. Geom., 421--429, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. W. Chambers, V. de Silva, J. Erickson, and R. Ghrist. Rips complexes of planar point sets. Preprint, 2007, ArXiv:0712.0395.Google ScholarGoogle Scholar
  14. B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range searching and new zone theorems. Proc 6th Ann. Symp. Comput. Geom., 23--33, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. É. Colin de Verdière and J. Erickson. Tightening non-simple paths and cycles on surfaces. Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, 192--201, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. É. Colin de Verdière and F. Lazarus. Optimal system of loops on an orientable surface. Discrete Comput. Geom. 33(3):507--534, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction decomposition. Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 278--287, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. K. Dey and S. Guha. Transforming curves on surfaces. J. Comput. Sys. Sci. 58(2):297--325, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. K. Dey and H. Schipper. A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. Discrete Comput. Geom. 14:93--110, 1995.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. A. Duncan, A. Efrat, S. G. Kobourov, and C. Wenk. Drawing with fat edges. Int. J. Found. Comput. Sci. 17(5):1143--1164, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  21. H. Edelsbrunner. The union of balls and its dual shape. Discrete Comput. Geom. 13:415--440, 1995.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, New York, NY, USA, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Edelsbrunner and J. Harer. Persistent homology: A survey. Discrete & Computational Topology: Twenty Years Later, to appear. AMS Press. http://www.cs.duke.edu/ edels/BookSurv/PersistenceSurvey.pdf.Google ScholarGoogle Scholar
  24. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete Comput. Geom. 28(4):511--533, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Efrat, S. G. Kobourov, and A. Lubiw. Computing homotopic shortest paths efficiently. Comput. Geom. Theory Appl. 35(3):162--172, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete Comput. Geom. 31(1):37--59, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators. Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 1038--1046, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. E. Fredkin. Trie memory. phCommun. ACM 3(9):490--499, 1960. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Ghrist. Barcodes: The persistent topology of data. Preprint, 2007. http://www.math.uiuc.edu/ ghrist/preprints/barcodes.pdf.Google ScholarGoogle Scholar
  30. R. Ghrist and A. Muhammad. Coverage and hole-detection in sensor networks via homology. Proc. 4th Int. Symp. Information Processing in Sensor Networks, p. 34, 2005. IEEE Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Grigoriev and A. Slissenko. Polytime algorithm for the shortest path in a homotopy class amidst semi-algebraic obstacles in the plane. Proc. Internat. Sympos. Symbolic and Algebraic Computation, 17--24, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Gromov. Hyperbolic groups. Essays in Group Theory, 75--265, 1987. MSRI Publications 8, Springer-Verlag.Google ScholarGoogle Scholar
  33. I. Guskov and Z. Wood. Topological noise removal. Proc. Graphics Interface, 19--26, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Hatcher. Algebraic Topology. Cambridge University Press, 2001. http://www.math.cornell.edu/~hatcher/.Google ScholarGoogle Scholar
  35. J.-C. Hausmann. On the Vietoris-Rips complexes and a cohomology theory for metric spaces. Prospects in Topology: Proceedings of a Conference in Honor of William Browder, 157--188, 1995. Ann. Math. Stud. 138, Princeton Univ. Press.Google ScholarGoogle Scholar
  36. J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class. Comput. Geom. Theory Appl. 4(2):63--97, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk. J. Algorithms 18(3):403--431, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. K. Kawarabayashi and B. Reed. Computing crossing number in linear time. Proc. 39th ACM Symp. Theory Comput., 382--390, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time. Proc. 22nd Ann. Sympos. Comput. Geom., 430--438, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Latschev. Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold. Archiv der Mathematik 77(6):522--528, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  41. F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Computing a canonical polygonal schema of an orientable triangulated surface. Proc. 17th Annu. ACM Sympos. Comput. Geom., 80--89, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. A. A. Markov. Insolubility of the problem of homeomorphy. Proceedings of the International Congress of Mathematics, 14--21, 1958. Cambridge University Press.Google ScholarGoogle Scholar
  43. J. Matoušek. Spanning trees with low crossing numbers. Informatique Théorique et Applications 6(25):103--123, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  44. B. Mohar and C. Thomassen. Graphs on Surfaces. Jons Hopkins Univ. Press, 2001.Google ScholarGoogle Scholar
  45. A. Muhammad and A. Jadbabaie. Asymptotic stability of switched higher order Laplacians and dynamic coverage. Hybrid Systems: Computation and Control, p. to appear, 2007. Lecture Notes Comput. Sci., Springer--Verlag. http://www.seas.upenn.edu/~jadbabai/papers/Muhammad_Jadbabaie_HSCC07_FinalSubmission.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Muhammad and A. Jadbabaie. Dynamic coverage verification in mobile sensor networks via switched higher order Laplacians. Proceedings of Robotics: Science and Systems, p. to appear, 2007. http://www.seas.upenn.edu/ jadbabai/papers/RSS_FINAL.pdf.Google ScholarGoogle Scholar
  47. J. Stillwell. Classical Topology and Combinatorial Group Theory, 2nd edition. Graduate Texts in Mathematics 72. Springer-Verlag, 1993.Google ScholarGoogle Scholar
  48. C. Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Comb. Theory Ser. B 48(2):155--177, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. É. C. de Verdière and F. Lazarus. Optimal pants decompositions and shortest homotopic cycles on an orientable surface. Proc. 11th Int. Symp. Graph Drawing, 478--490, 2003.Google ScholarGoogle Scholar
  50. L. Vietoris. Über den hoheren Zusammenhang kompakter Raume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97:454--472, 1927.Google ScholarGoogle ScholarCross RefCross Ref
  51. E. Welzl. On spanning trees with low crossing numbers. Data Structures and Efficient Algorithms, Final Report on the DFG Special Joint Initiative, 233--249, 1992. Lecture Notes Comput. Sci. 594, Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. Removing excess topology from isosurfaces. ACM Trans. Graph. 23(2):190--208. ACM Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. A. Zomorodian. Topology for Computing. Cambridge University Press, New York, NY, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete Comput. Geom. 33(2):249--274, 2005.\endthebibliography Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Testing contractibility in planar rips complexes

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCG '08: Proceedings of the twenty-fourth annual symposium on Computational geometry
      June 2008
      304 pages
      ISBN:9781605580715
      DOI:10.1145/1377676

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 June 2008

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader