Skip to main content
Log in

Infinite disorder and correlation fixed point in the Ising model with correlated disorder

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Recent Monte Carlo simulations of the q-state Potts model with a disorder displaying slowly-decaying correlations reported a violation of hyperscaling relation caused by large disorder fluctuations and the existence of a Griffiths phase, as in random systems governed by an infinite-disorder fixed point. New simulations of the Ising model (q = 2), directly made in the limit of an infinite disorder strength, are presented. The magnetic scaling dimension is shown to correspond to the correlated percolation fixed point. The latter is shown to be unstable at finite disorder strength but with a large cross-over length which is not accessible to Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Imry, M. Wortis, Phys. Rev. B 19, 3581 (1979)

    Article  ADS  Google Scholar 

  2. K. Hui, A.N. Berker, Phys. Rev. Lett. 62, 2507 (1989)

    Article  ADS  Google Scholar 

  3. M. Aizenman, J. Wehr, Phys. Rev. Lett. 62, 2503 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.B. Harris, J. Phys. C: Solid State Phys. 7, 1671 (1974)

    Article  ADS  Google Scholar 

  5. J.L. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79, 4063 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.L. Jacobsen, J.L. Cardy, Nucl. Phys. B 515, 701 (1998)

    Article  ADS  Google Scholar 

  7. C. Chatelain, B. Berche, Nucl. Phys. B 572, 626 (2000)

    Article  ADS  Google Scholar 

  8. A.W.W. Ludwig, Nucl. Phys. B 285, 97 (1987)

    Article  ADS  Google Scholar 

  9. A.W.W. Ludwig, J.L. Cardy, Nucl. Phys. B 285, 687 (1987)

    Article  ADS  Google Scholar 

  10. Vl.S. Dotsenko, M. Picco, P. Pujol, Phys. Lett. B 347, 113 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. Vl.S. Dotsenko, M. Picco, P. Pujol, Nucl. Phys. B 455, 701 (1995)

    Article  ADS  Google Scholar 

  12. L. Schwenger, K. Budde, C. Voges, H. Pfnür, Phys. Rev. Lett. 73, 296 (1994)

    Article  ADS  Google Scholar 

  13. A. Weinrib, B.I. Halperin, Phys. Rev. B 27, 413 (1983)

    Article  ADS  Google Scholar 

  14. H.G. Ballesteros, G. Parisi, Phys. Rev. B 60, 12912 (1999)

    Article  ADS  Google Scholar 

  15. D. Ivaneyko, B. Berche, Y. Holovatch, J. Ilnytskyi, Physica A 387, 4497 (2008)

    Article  ADS  Google Scholar 

  16. M. Dudka, A.A. Fedorenko, V. Blavatska, Y. Holovatch, Phys. Rev. B 93, 224422 (2016)

    Article  ADS  Google Scholar 

  17. C. Chatelain, Europhys. Lett. 102, 66007 (2013)

    Article  ADS  Google Scholar 

  18. C. Chatelain, Phys. Rev. E 89, 032105 (2014)

    Article  ADS  Google Scholar 

  19. R.B. Griffiths, Phys. Rev. Lett. 23, 17 (1969)

    Article  ADS  Google Scholar 

  20. T. Vojta, J. Phys. A 39, R143 (2006)

    Article  ADS  Google Scholar 

  21. B.M. McCoy, T.T. Wu, Phys. Rev. 176, 631 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  22. B.M. McCoy, T.T. Wu, Phys. Rev. 188, 982 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  23. D.S. Fisher, Phys. Rev. B 51, 6411 (1995)

    Article  ADS  Google Scholar 

  24. M. Schwartz, A. Soffer, Phys. Rev. Lett. 55, 2499 (1985)

    Article  ADS  Google Scholar 

  25. T. Senthil, S.N. Majumdar, Phys. Rev. Lett. 76, 3001 (1996)

    Article  ADS  Google Scholar 

  26. R.B. Potts, Math. Proc. Camb. Phil. Soc. 48, 106 (1952)

    Article  ADS  Google Scholar 

  27. J. Ashkin, E. Teller, Phys. Rev. 64, 178 (1943)

    Article  ADS  Google Scholar 

  28. C. Fan, Phys. Lett. A 39, 136 (1972)

    Article  ADS  Google Scholar 

  29. A. Coniglio, A. Fierro, Encyclopedia of Complexity and Systems Science, Part 3, 1596 (Springer, New York, 2009)

  30. W. Janke, A. Schakel, Braz. J. Phys. 36, 708 (2006)

    Article  ADS  Google Scholar 

  31. R. Tarjan, Inf. Proces. Lett. 2, 160 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Chatelain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatelain, C. Infinite disorder and correlation fixed point in the Ising model with correlated disorder. Eur. Phys. J. Spec. Top. 226, 805–816 (2017). https://doi.org/10.1140/epjst/e2016-60332-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60332-9

Navigation