Skip to main content

Advertisement

Log in

Porous ferroelectrics for energy harvesting applications

  • Regular Article
  • Prospective Materials and Structures for Energy Harvesting
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper provides an overview of energy harvesting using ferroelectric materials, with a particular focus on the energy harvesting capabilities of porous ferroelectric ceramics for both piezo- and pyroelectric harvesting. The benefits of introducing porosity into ferro- electrics such as lead zirconate titanate (PZT) has been known for over 30 years, but the potential advantages for energy harvesting from both ambient vibrations and temperature fluctuations have not been studied in depth. The article briefly discusses piezoelectric and pyro- electric energy harvesting, before evaluating the potential benefits of porous materials for increasing energy harvesting figures of merits and electromechanical/electrothermal coupling factors. Established processing routes are evaluated in terms of the final porous structure and the resulting effects on the electrical, thermal and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Sodano, D.J. Inman, G. Park, Shock Vib. Dig. 36, 3 (2004)

    Article  Google Scholar 

  2. K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Smart Mater. Struct. 17, 043001 (2008)

    Article  ADS  Google Scholar 

  3. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 1 (2013)

    Google Scholar 

  4. H.A. Sodano, J. Intell. Mater. Syst. Struct. 16, 10 (2005)

    Google Scholar 

  5. H.A. Sodano, G. Park, D.J. Inman. Strain 40, 2 (2004)

    Article  Google Scholar 

  6. S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Techol. 17, 12 (2006)

    Article  Google Scholar 

  7. I. Johnson, T. William, W.T. Choate, A. Davidson, Waste heat recovery: technology and opportunities in US industry (U.S. Department of Energy, 2008)

  8. S.R. Hunter, N.V. Lavrik, S. Mostafa, S. Rajic, P G. Datskos, In Proceedings of the Society of Photo-Optical Instrumentation Engineers, Vol. 8377 (2012)

  9. F.Y. Lee, A. Navid, L. Pilon, App. Therm. Eng. 37 (2012)

  10. R. Zhang, B. Jiang, W. Cao, J. App. Phys. 90, 7 (2001)

    Google Scholar 

  11. M. Ghandchi Tehrani, G. Gatti, M.J. Brennan, D.J. Thompson, In 11th International Conference on Vibration Problems (2013)

  12. J. Lee, B. Choi, Energ. Convers. Manage. 78 (2014)

  13. N.S. Shenck, J.A. Paradiso, IEEE Micro 21, 3 (2001)

    Article  Google Scholar 

  14. J. Granstrom, J. Feenstra, H.A. Sodano, K. Farinholt, Smart Mater. Struct. 16 (2007)

  15. J. Allen, J. Smits, J. Fluids Struct. 15, 1 (2001)

    Article  Google Scholar 

  16. M. Deterre, E. Lefeuvre, E. Dufour-Gergam, Smart Mater. Struct. 21, 8 (2012)

    Article  Google Scholar 

  17. M.J. Ramsey, W.W. Clark, In Proceedings of the Society of Photo-Optical Instrumentation Engineers (2001)

  18. J. Smoker, M. Nouh, J. App. Phys. 111, 104901 (2012)

    Article  ADS  Google Scholar 

  19. Z.L. Wang, J. Song, Science 312 (2006)

  20. S.N. Cha, S.M. Kim, H.J. Kim, J.Y. Ku, J.I. Sohn, Nano Lett. 11 (2011)

  21. R.A. Islam, S. Priya, App. Phys. Lett. 88, 3 (2006)

    Article  Google Scholar 

  22. S. Priya, J. Electroceram. 19, 1 (2007)

    Article  Google Scholar 

  23. S. Priya, IEEE Trans. Ultrason., Ferroelect., Freq. Control 57, 12 (2010)

    Google Scholar 

  24. E.K. Akdogan, M. Allahverdi, A. Safari, IEEE Trans. Ultrason., Ferroelect., Freq. Control 52, 5 (2005)

    Article  Google Scholar 

  25. C.-H. Choi, I.-T. Seo, D. Song, M.-S. Jang, B.-Y. Kim, S. Nahm, T.-H. Sung, H.-C. Song, J. Eur. Ceram. Soc. 33, 7 (2013)

    Article  Google Scholar 

  26. J. Hur, I.T. Seo, D.H. Kim, S. Nahm, J. Ryu, S. H. Han, C.Y. Kang, S.J. Yoon, J. Am. Ceram. Soc. 97, 10 (2014)

    Article  Google Scholar 

  27. M.I. Friswell, S. Adhikari, J. App. Phys. 108, 014901 (2010)

    Article  ADS  Google Scholar 

  28. M. Stewart, P.M. Weaver, M. Cain, App. Phys. Lett. 100, 073901 (2012)

    Article  ADS  Google Scholar 

  29. S.B. Lang, Phys. Today 58, 8 (2005)

    Article  Google Scholar 

  30. Q. Zhang, A. Agbossou, Z. Feng, M. Cosnier, Sensor. Actuat. A - Phys. 168, 2 (2011)

    Google Scholar 

  31. C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Energy Environ. Sci. 7 (2014)

  32. S.H. Krishnan, D. Ezhilarasi, G. Uma, M. Umapathy, IEEE Trans. Sustain. Energy 5, 1 (2014)

    Article  Google Scholar 

  33. V. Kotipalli, Z. Gong, P. Pathak, T. Zhang, Y. He, S. Yadav, L. Que, App. Phys. Lett. 97, 124102 (2010)

    Article  ADS  Google Scholar 

  34. C.R. Bowen, J. Taylor, E. Le Boulbar, D. Zabek, V. Yu, Topolov. Mater. Lett. 138 (2015)

  35. S.B. Lang, D.K. Das-Gupta, In Handbook of Advanced Electronic and Photonic Materials and Devices (VDM Verlag, 2001)

  36. R.W. Whatmore, Rep. Prog. Phys. 49 (1986)

  37. G.H. Haertling, J. Am. Ceram. Soc. 82, 4 (1999)

    Article  Google Scholar 

  38. A.J. Lovinger, Science 220, 4602 (1983)

    Article  Google Scholar 

  39. E. Mercadelli, A. Sanson, C. Galassi, In Piezoelectric Ceramics (InTech Open, 2010)

  40. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 5 (1978)

    Article  Google Scholar 

  41. D.P. Skinner, R.E. Newnham, L.E. Cross, Mater. Res. Bull. 13, 6 (1978)

    Article  Google Scholar 

  42. T. Arai, K. Ayusawa, H. Sato, T. Miyata, K. Kazutami, K. Keiichi, Jpn. J. App. Phys. 30, 9B (1991)

    Article  Google Scholar 

  43. S. Marselli, V. Pavia, C. Galassi, E. Roncari, F. Cranciun, G. Guidarelli, J. Acoust. Soc. Am. 106, 2 (1999)

    Article  Google Scholar 

  44. E. Roncari, C. Galassi, F. Cranciun, G. Guidarelli, S. Marselli, V. Pavia, In Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics (1998)

  45. A. Navid, C.S. Lynch, L. Pilon, Smart Mater. Struct. 19, 055006 (2010)

    Article  ADS  Google Scholar 

  46. A. Navarro, R.W. Whatmore, J.R. Alcock, J. Electroceram. 13 (2004)

  47. C.P. Shaw, R.W. Whatmore, J.R. Alcock, J. Am. Ceram. Soc. 90, 1 (2007)

    Article  Google Scholar 

  48. A. Safari, E.K. Akdogan, Ferroelectrics 331 (2006)

  49. C.R. Bowen, A. Perry, A.C.F Lewis, H. Kara, J. Eur. Ceram. Soc. 24, 2 (2004)

    Article  Google Scholar 

  50. E. Roncari, C. Galassi, F. Craciun, C. Capiani, A. Piancastelli, J. Eur. Ceram. Soc. 21, 3 (2001)

    Article  Google Scholar 

  51. W. Liu, J. Xu, Y. Wang, H. Xu, X. Xi, J. Yang, J. Am. Ceram. Soc. 96, 6 (2013)

    Google Scholar 

  52. F. Craciun, C. Galassi, E. Roncari, A. Filippi, G. Guidarelli, Ferroelectrics 205, 1 (1998)

    Article  Google Scholar 

  53. T. Xu, C.A. Wang, J. Am. Ceram. Soc. 97, 5 (2014)

    Google Scholar 

  54. T. Zeng, X. Dong, C. Mao, Z. Zhou, H. Yang, J. Eur. Ceram. Soc. 27, 4 (2007)

    Google Scholar 

  55. P. Li, Y. Pu, Z. Dong, P. Gao, J. Electron. Mater. 43, 2 (2014)

    Google Scholar 

  56. G. Liu, T.W. Button, D. Zhang, J. Eur. Ceram. Soc. 34, 15 (2014)

    Article  Google Scholar 

  57. A. Navid, L. Pilon, Smart Mater. Struct. 20, 025012 (2011)

    Article  ADS  Google Scholar 

  58. S.B. Lang, E. Ringgaard, In IEEE Conference on Electrical Insulation and Dielectric Phenomena (2009)

  59. H. Kara, R. Ramesh, R. Stevens, C.R. Bowen, IEEE Trans. Ultrason., Ferroelect., Freq. Control 50, 3 (2003)

    Google Scholar 

  60. K. Rittenmyer, T.R. Shrout, W.A. Schulze, R.E. Newnham, Ferroelectrics 41, 1 (1982)

    Article  Google Scholar 

  61. R.A. Dorey, IEEE Sensors J. 14, 7 (2014)

    Article  Google Scholar 

  62. B.P. Kumar, H.H. Kumar, D.K. Kharat, J. Mater. Sci. Mater. Electron. 16 (2005)

  63. T. Zeng, X. Dong, S. Chen, H. Yang, Ceram. Inter. 33 (2007)

  64. A. Yang, C.-A. Wang, R. Guo, Y. Huang, J. Am. Ceram. Soc. 93, 7 (2010)

    Google Scholar 

  65. C.R. Bowen, H. Kara, Mater. Chem. Phys. 75 (2002)

  66. Y. Zhang, K. Zhou, J. Zeng, D. Zhang, Adv. App. Ceram. 112, 7 (2013)

    Google Scholar 

  67. Y.-Y. Li, L.-T. Li, B. Li, J. Alloys Compd. 620 (2015)

  68. M.J. Creedon, W.A. Schulze, Ferroelectrics 153, 1 (1994)

    Article  Google Scholar 

  69. A.C. Young, O.O. Omatete, M.A. Janney, P.A. Menchhofer, J. Am. Ceram. Soc. 74, 3 (1991)

    Article  Google Scholar 

  70. R. Chen, Y. Huang, C.-A. Wang, J. Qi, J. Am. Ceram. Soc. 90, 11 (2007)

    Google Scholar 

  71. A. Yang, C.-A. Wang, R. Guo, Y. Huang, C.-W. Nan, Ceram. Inter. 36, 2 (2010)

    Google Scholar 

  72. A. Yang, C.-A. Wang, R. Guo, Y. Huang, App. Phys. Lett. 98, 152904 (2011)

    Article  ADS  Google Scholar 

  73. W. Liu, J. Xu, R. Lv, Y. Wang, H. Xu, J. Yang, Ceram. Inter. 40 (2014)

  74. A. Yang, C.-A. Wang, R. Guo, Y. Huang, C.-W. Nan, J. Am. Ceram. Soc. 93, 5 (2010)

    Google Scholar 

  75. D. Zhang, Y. Zhang, R. Xie, K. Zhou, Ceram. Inter. 38, 7 (2012)

    Google Scholar 

  76. A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89, 6 (2006)

    Google Scholar 

  77. W. Liu, Li. Du, Y. Wang, J. Yang, H. Xu, Ceram. Inter. 39, 8 (2013)

    Google Scholar 

  78. T. Fukasawa, M. Ando, J. Am. Ceram. Soc. 84, 1 (2001)

    Article  Google Scholar 

  79. T. Fukasawa, Z.Y. Deng, M. Ando. J. Amer. Ceramic Soc. 85, 9 (2002)

    Google Scholar 

  80. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Science 311 (2006)

  81. K. Araki, J.W. Halloran, J. Am. Ceram. Soc. 88, 5 (2005)

    Article  Google Scholar 

  82. S. Deville, Adv. Eng. Mater. 10, 3 (2008)

    Article  Google Scholar 

  83. Y. Zhang, L. Chen, J. Zeng, K. Zhou, D. Zhang, Mater. Sci. Eng. C. 39 (2014)

  84. S.-H. Lee, S.-H. Jun, H.-E. Kim, Y.-H. Koh, J. Am. Ceram. Soc. 90, 9 (2007)

    Google Scholar 

  85. L. Hu, C.-A. Wang, Y. Huang, C. Sun, S. Lu, Z. Hu, J. Eur. Ceram. Soc. 30, 16 (2010)

    Google Scholar 

  86. K. Araki, J. W. Halloran, J. Am. Ceram. Soc. 87, 11 (2004)

    Google Scholar 

  87. Y. Zhang, J. Am. Ceram. Soc. 98, 10 (2015)

    Google Scholar 

  88. R. Guo, C.-A. Wang, A. Yang, J. Eur. Ceram. Soc. 31 (2011)

  89. M. Allahverdi, S.C. Danforth, M. Jafari, A. Safari, J. Eur. Ceram. Soc. 21 (2001)

  90. C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Nano Lett. 10 (2010)

  91. J. Briscoe, S. Dunn, Nano Energy 14 (2015)

  92. R.W.C. Lewis, D.W.E. Allsopp, P. Shields, A. Šatka, S. Yu, V.Y. Topolov, C.R. Bowen, Ferroelectrics 429, 1 (2012)

    Article  Google Scholar 

  93. S. Xu, B.J. Hansen, Z.L. Wang, Nat. Commun. 1, 93 (2010)

    Article  ADS  Google Scholar 

  94. M. Dietze, J. Krause, C.H. Solterbeck, M. Es-Souni, J. App. Phys. 101, 054113 (2007)

    Article  ADS  Google Scholar 

  95. W.R. Mccall, K. Kim, C. Heath, G. La Pierre, D.J. Sirbuly, ACS Appl. Mater. Interfaces 6, 22 (2014)

    Article  Google Scholar 

  96. K. Kim, W. Zhu, X. Qu, C. Aaronson, W.R. McCall, ACS Nano 8, 10 (2014)

    Google Scholar 

  97. P. Adhikary, S. Garain, D. Mandal, Phys. Chem. Chem. Phys. 17 (2015)

  98. Z. He, J. Ma, R. Zhang. Ceram. Inter. 30 (2004)

  99. T. Zeng, X. Dong, H. Chen, Y.L. Wang, Mater. Sci. Eng. B 131 (2006)

  100. K. Okazaki, K. Nagata, J. Am. Ceram. Soc. 56, 2 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roscow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roscow, J., Zhang, Y., Taylor, J. et al. Porous ferroelectrics for energy harvesting applications. Eur. Phys. J. Spec. Top. 224, 2949–2966 (2015). https://doi.org/10.1140/epjst/e2015-02600-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02600-y

Keywords

Navigation