Abstract.
A phase field model for dealing with shape instabilities in fluid membrane vesicles is presented. This model takes into account the Canham-Helfrich bending energy with spontaneous curvature. A dynamic equation for the phase-field is also derived. With this model it is possible to see the vesicle shape deformation dynamically, when some external agent instabilizes the membrane, for instance, inducing an inhomogeneous spontaneous curvature. The numerical scheme used is detailed and some stationary shapes are shown together with a shape diagram for vesicles of spherical topology and no spontaneous curvature, in agreement with known results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
M. Edidin, Nat. Rev. Mol. Cell Biol. 4, 414 (2003)
S. Leibler, Equilibrium statistical mechanics of fluctuating films and membranes, in Statistical Mechanics of Membranes and Surfaces, edited by D. Nelson, S. Weinberg (World Scientific, 1989) pp. 45–103
S.A. Safran, Statistical Thermodynamics of Surfaces Interfaces, and Membranes, Frontiers in Physics No. 90 (Addison-Wesley, 1994)
R. Lipowsky, E. Sackmann, (Eds.) Structure and Dynamics of Membranes, Handbook of Biological Physics (Elsevier Science, 1995)
B. Alberts et al., Molecular Biology of the Cell, 4th edn. (Garland Science, 2002)
J. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, 1992)
J. Zimmerberg, M.M. Kozlov, Nature Rev. Mol. Cell Biol. 7, 9 (2006)
U. Seifert, Adv. Phys. 46, 13 (1997)
S.A. Safran, Adv. Phys. 48, 395 (1999)
P. Canham, J. Theor. Biol. 26, 61 (1970)
W. Helfrich, Z. Naturforsch. C 28, 693 (1973)
K. Brakke, Exp. Math. 1, 141 (1992)
F. Campelo, A. Hernández-Machado, Eur. Phys. J. E 20, 37 (2006)
I. Tsafrir et al., Phys. Rev. Lett. 86, 1138 (2001)
I. Tsafrir, Shape Instabilities of Membranes with Anchored Polymers under Geometric Constraints, Ph.D. thesis (Weizmann Institute of Science, 2003)
I. Tsafrir, Y. Caspi, M.A. Guedeau-Boudeville, T. Arzi, J. Stavans, Phys. Rev. Lett. 91, 138102 (2003)
H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. Engl. 27, 113 (1988)
J. Langer, in Directions in Condensed Matter Physics, edited by G. Grinstein G. Mazenko (World Scientific, 1986)
R. González-Cinca et al., in Advances in Condensed Matter and Statistical Physics, edited by E. Korutcheva, R. Cuerno (Nova Science Publishers, 2004) pp. 203–236, http://arxiv.org/abs/cond-mat/0305058
M. Alava, M. Dubé, M. Rost, Adv. Phys. 53, 83 (2004)
M. Kraus, W. Wintz, U. Seifert, R. Lipowsky, Phys. Rev. Lett. 77, 3685 (1996)
M. do Carmo, Differential Geometry of Curves and Surfaces (Prentince-Hall, 1976)
G. Foltin, Phys. Rev. E 49, 5243–5248 (1994)
T. Taniguchi, Phys. Rev. Lett. 76, 4444 (1996)
Q. Du, C. Liu, X. Wang, J. Comput. Phys. 121, 757 (2006)
E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990)
J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations (Wadsworth & Brooks, 1989)
D.P. Bertsekas, Nonlinear Programming, 2nd edn. (Athena Scientific, 1999)
U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991)
R.D. Kamien, Rev. Mod. Phys. 74, 953 (2002)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Campelo, F., Hernández-Machado, A. Shape instabilities in vesicles: A phase-field model. Eur. Phys. J. Spec. Top. 143, 101–108 (2007). https://doi.org/10.1140/epjst/e2007-00077-y
Issue Date:
DOI: https://doi.org/10.1140/epjst/e2007-00077-y