Skip to main content
Log in

Explicit impacts of harvesting on a fractional-order delayed predator–prey model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We propose a fractional-order prey-predator model with delay and harvesting. Comparatively, only a few analyses are made to explore the impact of harvesting on population fluctuation due to time delay and fractional order. Thus, our focus is whether harvesting effort can stabilize or destabilize the system by varying the fractional order or keeping it fixed. We have observed that fractional order influences the delayed system and the number of stability switching differently in the case of either predator or prey harvesting. Both fractional order and predator harvesting have a destabilizing effect, whereas prey harvesting has a stabilizing effect on the system. In addition, we observed stability switching induced by predator harvesting while keeping the delay fixed. Moreover, in the case of predator harvesting, when the carrying capacity of prey exceeds a certain threshold, the number of switching regions increases significantly. For yield maximization, we observe that maximum sustainable yield (MSY) exists for predator harvesting only; however, yield at MSY produces stable stock only when the time delay is minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: During this study, no datasets were created or analyzed].

References

  1. E. Ahmed, A. Elgazzar, On fractional order differential equations model for nonlocal epidemics. Phys. A 379(2), 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  2. H.J. Alsakaji, S. Kundu, F.A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and Holling type II functional responses. Appl. Math. Comput. 397, 125919 (2021)

    MathSciNet  MATH  Google Scholar 

  3. R. Arditi, L.R. Ginzburg, How species interact: altering the standard view on Trophic Ecology. Oxford University Press, 2012

  4. A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos, Solitons & Fractals 123, 320–337 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Atangana, A. Shafiq, Differential and integral operators with constant fractional order and variable fractional dimension. Chaos, Solitons & Fractals 127, 226–243 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. B. Barman, B. Ghosh, Explicit impacts of harvesting in delayed predator-prey models. Chaos, Solitons & Fractals 122, 213–228 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. B. Barman, B. Ghosh, Dynamics of a spatially coupled model with delayed prey dispersal. Int. J. Modell. Simul. 42(3), 400–414 (2022)

    Article  Google Scholar 

  8. K. Chakraborty, S. Haldar, T.K. Kar, Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure. Nonlinear Dyn. 73(3), 1307–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Chinnathambi, F.A. Rihan, Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response. Nonlinear Dyn. 92(4), 1637–1648 (2018)

    Article  MATH  Google Scholar 

  10. W. Deng, C. Li, J. Lü, Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Dubey, A. Kumar, Dynamics of prey-predator model with stage structure in prey including maturation and gestation delays. Nonlinear Dyn. 96(4), 2653–2679 (2019)

    Article  MATH  Google Scholar 

  12. B. Ghosh, T.K. Kar, T. Legović, Relationship between exploitation, oscillation, MSY and extinction. Math. Biosci. 256, 1–9 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.A. Gourley, Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate. J. Math. Biol. 49(2), 188–200 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. C.P. Ho, Y.L. Ou, Influence of time delay on local stability for a predator-prey system. J. Tunghai Sci. 4, 47–62 (2002)

    Google Scholar 

  15. C.S. Holling, Some characteristics of simple types of predation and parasitism. Can. Entomol. 91(7), 385–398 (1959)

    Article  Google Scholar 

  16. M. Javidi, N. Nyamoradi, Dynamic analysis of a fractional order prey-predator interaction with harvesting. Appl. Math. Modell. 37(20–21), 8946–8956 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. T.K. Kar, Selective harvesting in a prey-predator fishery with time delay. Math. Comput. Modell. 38(3–4), 449–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. T.K. Kar, B. Ghosh, Impacts of maximum sustainable yield policy to prey-predator systems. Ecol. Modell. 250, 134–142 (2013)

    Article  Google Scholar 

  19. T.K. Kar, H. Matsuda, Controllability of a harvested prey-predator system with time delay. J. Biol. Syst. 14(02), 243–254 (2006)

    Article  MATH  Google Scholar 

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, 2006

  21. V. Kumar, J. Dhar, H.S. Bhatti, Stability and Hopf bifurcation dynamics of a food chain system: plant-pest-natural enemy with dual gestation delay as a biological control strategy. Model. Earth Syst. Environ. 4(2), 881–889 (2018)

    Article  MATH  Google Scholar 

  22. T. Legović, J. Klanjšček, S. Geček, Maximum sustainable yield and species extinction in ecosystems. Ecol. Model. 221(12), 1569–1574 (2010)

    Article  Google Scholar 

  23. C.P. Li, Z.G. Zhao, Asymptotical stability analysis of linear fractional differential systems. J. Shanghai Univ. (English Edition) 13(3), 197–206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Majee, S. Jana, S. Barman, T.K. Kar, Transmission dynamics of monkeypox virus with treatment and vaccination controls: a fractional order mathematical approach. Physica Scripta (2022)

  25. S. Majee, S. Jana, D.K. Das, T.K. Kar, Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability. Chaos, Solitons & Fractals 161, 112291 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Mandal, S. Jana, S.K. Nandi, T.K. Kar, Modeling and analysis of a fractional-order prey-predator system incorporating harvesting. Model. Earth Syst. Environ. 7(2), 1159–1176 (2021)

    Article  Google Scholar 

  27. A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting. J. Math. Biol. 43(3), 247–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Mesterton-Gibbons, A technique for finding optimal two-species harvesting policies. Ecol. Model. 92(2–3), 235–244 (1996)

    Article  Google Scholar 

  29. K. Nosrati, M. Shafiee, Dynamic analysis of fractional-order singular Holling type-II predator-prey system. Appl. Math. Comput. 313, 159–179 (2017)

    MathSciNet  MATH  Google Scholar 

  30. K.M. Owolabi, Computational study of noninteger order system of predation. Chaos 29, 1 (2019), 013120

  31. K.M. Owolabi, Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete Continuous Dyn. Syst.-S 13(3), 823 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. K.M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation. Springer, 2019

  33. F.A. Rihan, H.J. Alsakaji, C. Rajivganthi, Stability and Hopf bifurcation of three-species prey-predator system with time delays and Allee effect. Complexity 2020, 1–15 (2020)

    Article  MATH  Google Scholar 

  34. F.A. Rihan, D. Baleanu, S. Lakshmanan, R. Rakkiyappan, On fractional SIRC model with Salmonella Bacterial Infection. Abstract and Applied Analysis 2014 (2014)

  35. F.A. Rihan, S. Lakshmanan, A. Hashish, R. Rakkiyappan, E. Ahmed, Fractional-order delayed predator-prey systems with Holling type-II functional response. Nonlinear Dyn. 80(1), 777–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. F.A. Rihan, C. Rajivganthi, Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators. Chaos, Solitons & Fractals 141, 110365 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. F.A. Rihan, G. Velmurugan, Dynamics of fractional-order delay differential model for tumor-immune system. Chaos, Solitons & Fractals 132, 109592 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. K. Sarkar, B. Mondal, Dynamic analysis of a fractional-order predator–prey model with harvesting. Int. J. Dyn. Control (2022), 1–14

  39. Y. Sekerci, Climate change effects on fractional order prey-predator model. Chaos, Solitons & Fractals 134, 109690 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Song, H. Zhao, X. Zhang, Dynamic analysis of a fractional order delayed predator-prey system with harvesting. Theory Biosci. 135(1), 59–72 (2016)

    Article  Google Scholar 

  41. N. Supajaidee, S. Moonchai, Stability analysis of a fractional-order two-species facultative mutualism model with harvesting. Adv. Differ. Equ. 2017(1), 1–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Suryanto, I. Darti, S.H. Panigoro, A. Kilicman, A fractional-order predator–prey model with ratio-dependent functional response and linear harvesting. Mathematics 7, 11 (2019), 1100

  43. S. Wang, S. He, A. Yousefpour, H. Jahanshahi, R. Repnik, M. Perc, Chaos and complexity in a fractional-order financial system with time delays. Chaos, Solitons & Fractals 131, 109521 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research work of Bidhan Bhunia is financially supported by UGC-NFSC, India(Ref. No.:191620076432), and the research work of Lakpa Thendup Bhutia is financially supported by Council of Scientific and Industrial Research (CSIR), India (File No. 08/0003(13400)/2022-EMR-I, dated: 4th March 2022).

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is prepared by Bidhan Bhunia, Lakpa Thendup Bhutia, Tapan Kumar Kar, and Papiya Debnath. Bidhan Bhunia and Lakpa Thendup Bhutia have a main role in designing the approach and performing the analysis and writing the manuscript, with substantial input from Tapan Kumar Kar and Papiya Debnath.

Corresponding author

Correspondence to Bidhan Bhunia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, B., Bhutia, L.T., Kar, T.K. et al. Explicit impacts of harvesting on a fractional-order delayed predator–prey model. Eur. Phys. J. Spec. Top. 232, 2629–2644 (2023). https://doi.org/10.1140/epjs/s11734-023-00941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00941-2

Navigation