Skip to main content
Log in

Coherent acoustic pulse emission by ensembles of plasmonic nanoparticles

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The ability of a layer of silver nanoparticles with broad size dispersion to excite coherent acoustic phonon wave-packet in its supporting glass substrate following femtosecond laser excitation is tested using time-domain Brillouin scattering in transmission configuration. The generation and propagation over several micrometer distances of gigahertz acoustic phonons in the underlying glass is observed for all investigated samples, involving nanoparticle layers with different morphological properties. The phonon wave-packet exhibits frequency-dependent attenuation rates and amplitudes in the 40–50 GHz acoustic frequency region. The measured attenuation rates are consistent with previous experimental results on silica, indicating that anharmonic interaction of acoustic waves with the thermal phonon bath has dominating contribution to the phonon damping. The features of the acoustic waves emitted by a discontinuous nanoparticle layer are investigated using a simplified theoretical model, allowing to better understand at which condition they are similar to those of the waves emitted by a continuous thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. V.E. Gusev, P. Ruello, Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 5(3), 031101 (2018)

    ADS  Google Scholar 

  2. C.J. Morath, H.J. Maris, Phonon attenuation in amorphous solids studied by picosecond ultrasonics. Phys. Rev. B 54(1), 203 (1996)

    ADS  Google Scholar 

  3. J. Fabian, P.B. Allen, Theory of sound attenuation in glasses: the role of thermal vibrations. Phys. Rev. Lett. 82(7), 1478 (1999)

    ADS  Google Scholar 

  4. R. Vacher, E. Courtens, M. Foret, Anharmonic versus relaxational sound damping in glasses. II. Vitreous silica. Phys. Rev. B 72(21), 214205 (2005)

    ADS  Google Scholar 

  5. T.C. Zhu, H.J. Maris, J. Tauc, Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440 GHz. Phys. Rev. B 44(9), 4281 (1991)

    ADS  Google Scholar 

  6. C. Klieber, E. Peronne, K. Katayama, J. Choi, M. Yamaguchi, T. Pezeril, K.A. Nelson, Narrow-band acoustic attenuation measurements in vitreous silica at frequencies between 20 and 400 GHz. Appl. Phys. Lett. 98(21), 211908 (2011)

    ADS  Google Scholar 

  7. K.H. Lin, C.M. Lai, C.C. Pan, J.I. Chyi, J.W. Shi, S.Z. Sun, C.F. Chang, C.K. Sun, Spatial manipulation of nanoacoustic waves with nanoscale spot sizes. Nat. Nanotechnol. 2(11), 704 (2007)

    ADS  Google Scholar 

  8. B. Ostovar, M.N. Su, D. Renard, B.D. Clark, P.D. Dongare, C. Dutta, N. Gross, J.E. Sader, C.F. Landes, W.S. Chang, N.J. Halas, S. Link, Acoustic vibrations of Al nanocrystals: size, shape, and crystallinity revealed by single-particle transient extinction spectroscopy. J. Phys. Chem. A 124(19), 3924 (2020)

    Google Scholar 

  9. R. Marty, A. Arbouet, C. Girard, A. Mlayah, V. Paillard, V.K. Lin, S.L. Teo, S. Tripathy, Damping of the acoustic vibrations of individual gold nanoparticles. Nano Lett. 11(8), 3301 (2011)

    ADS  Google Scholar 

  10. H. Staleva, G.V. Hartland, Transient absorption studies of single silver nanocubes. J. Phys. Chem. C 112(20), 7535 (2008)

    Google Scholar 

  11. J. Burgin, P. Langot, N. Del Fatti, F. Vallée, W. Huang, M.A. El-Sayed, Time-resolved investigation of the acoustic vibration of a single gold nanoprism pair. J. Phys. Chem. C 112(30), 11231 (2008)

    Google Scholar 

  12. P.V. Ruijgrok, P. Zijlstra, A.L. Tchebotareva, M. Orrit, Damping of acoustic vibrations of single gold nanoparticles optically trapped in water. Nano Lett. 12(2), 1063 (2012)

    ADS  Google Scholar 

  13. A. Crut, P. Maioli, N. Del Fatti, F. Vallée, Optical absorption and scattering spectroscopies of single nano-objects. Chem. Soc. Rev. 43(11), 3921 (2014)

    Google Scholar 

  14. P. Zijlstra, A.L. Tchebotareva, J.W.M. Chon, M. Gu, M. Orrit, Acoustic oscillations and elastic moduli of single gold nanorods. Nano Lett. 8(10), 3493 (2008)

    ADS  Google Scholar 

  15. A. Crut, P. Maioli, N. Del Fatti, F. Vallée, Acoustic vibrations of metal nano-objects: Time-domain investigations. Phys. Rep. 549, 1 (2015)

    ADS  MathSciNet  Google Scholar 

  16. Y. Guillet, C. Rossignol, B. Audoin, G. Calbris, S. Ravaine, Optoacoustic response of a single submicronic gold particle revealed by the picosecond ultrasonics technique. Appl. Phys. Lett. 95(6), 061909 (2009)

    ADS  Google Scholar 

  17. A. Amziane, L. Belliard, F. Decremps, B. Perrin, Ultrafast acoustic resonance spectroscopy of gold nanostructures: towards a generation of tunable transverse waves. Phys. Rev. B 83(1), 014102 (2011)

    ADS  Google Scholar 

  18. C. Jean, L. Belliard, T.W. Cornelius, O. Thomas, Y. Pennec, M. Cassinelli, M.E. Toimil-Molares, B. Perrin, Spatio-temporal imaging of the acoustic field emitted by a single copper nanowire. Nano Lett. 16(10), 6592 (2016)

    ADS  Google Scholar 

  19. K. Yu, T. Devkota, G. Beane, G.P. Wang, G.V. Hartland, Brillouin oscillations from single Au nanoplate opto-acoustic transducers. ACS Nano 11(8), 8064 (2017)

    Google Scholar 

  20. F. Xu, Y. Guillet, S. Ravaine, B. Audoin, All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod. Phys. Rev. B 97(16), 165412 (2018)

    ADS  Google Scholar 

  21. R. Berte, F. Della Picca, M. Poblet, Y. Li, E. Cortés, R.V. Craster, S.A. Maier, A.V. Bragas, Acoustic far-field hypersonic surface wave detection with single plasmonic nanoantennas. Phys. Rev. Lett. 121(25), 253902 (2018)

    ADS  Google Scholar 

  22. M.M.A. Yajadda, I. Levchenko, K. Ostrikov, Gold nanoresistors with near-constant resistivity in the cryogenic-to-room temperature range. J. Appl. Phys. 110(2), 023303 (2011)

    ADS  Google Scholar 

  23. M. Mirigliano, P. Milani, Electrical conduction in nanogranular cluster-assembled metallic films. Adv. Phys. X 6(1), 1908847 (2021)

    Google Scholar 

  24. S. Lee, M. Shin, S. Hwang, J. Jang, Unconventional but tunable phase transition above the percolation threshold by two-layer conduction in electroless-deposited Au nanofeatures on silicon substrate. Nanotechnology 26(50), 505202 (2015)

    Google Scholar 

  25. M. Šubr, M. Petr, O. Kylián, J. Kratochvíl, J. Procházka, Large-scale Ag nanoislands stabilized by a magnetron-sputtered polytetrafluoroethylene film as substrates for highly sensitive and reproducible surface-enhanced Raman scattering (SERS). J. Mater. Chem. C 3(43), 11478 (2015)

    Google Scholar 

  26. T. Chung, Y. Lee, M.-S. Ahn, W. Lee, S.-I. Bae, C. Soon, H. Hwang, K.-H. Jeong, Nanoislands as plasmonic materials. Nanoscale 11(18), 8651 (2019)

    Google Scholar 

  27. W. Huang, W. Qian, M.A. El-Sayed, Coherent vibrational oscillation in gold prismatic monolayer periodic nanoparticle arrays. Nano Lett. 4(9), 1741 (2004)

    ADS  Google Scholar 

  28. L. Wang, Y. Nishijima, K. Ueno, H. Misawa, N. Tamai, Effect of dipole coupling on near-IR LSPR and coherent phonon vibration of periodic gold pair nanocuboids. J. Phys. Chem. C 116(33), 17838 (2012)

    Google Scholar 

  29. W. Huang, W. Qian, M.A. El-Sayed, The optically detected coherent lattice oscillations in silver and gold monolayer periodic nanoprism arrays: the effect of interparticle coupling. J. Phys. Chem. B 109(40), 18881 (2005)

    Google Scholar 

  30. H. Petrova, C.H. Lin, S. De Liejer, M. Hu, J.M. McLellan, A.R. Siekkinen, B.J. Wiley, M. Marquez, Y. Xia, J.E. Sader, G.V. Hartland, Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes. J. Chem. Phys. 126(9), 094709 (2007)

    ADS  Google Scholar 

  31. P.M. Jais, D.B. Murray, R. Merlin, A.V. Bragas, Metal nanoparticle ensembles: tunable laser pulses distinguish monomer from dimer vibrations. Nano Lett. 11(9), 3685 (2011)

    ADS  Google Scholar 

  32. J. Burgin, P. Langot, A. Arbouet, J. Margueritat, J. Gonzalo, C.N. Afonso, F. Vallée, A. Mlayah, M.D. Rossell, G. Van Tendeloo, Acoustic vibration modes and electron–lattice coupling in self-assembled silver nanocolumns. Nano Lett. 8(5), 1296 (2008)

    ADS  Google Scholar 

  33. A. Nelet, A. Crut, A. Arbouet, N. Del Fatti, F. Vallée, H. Portalès, L. Saviot, E. Duval, Acoustic vibrations of metal nanoparticles: high order radial mode detection. Appl. Surf. Sci. 226(1–3), 209 (2004)

    ADS  Google Scholar 

  34. W. Qian, L. Lin, Y.J. Deng, Z.J. Xia, Y.H. Zou, G.K.L. Wong, Femtosecond studies of coherent acoustic phonons in gold nanoparticles embedded in TiO2 thin films. J. Appl. Phys. 87(1), 612 (2000)

    ADS  Google Scholar 

  35. S. Ayrinhac, M. Foret, A. Devos, B. Rufflé, E. Courtens, R. Vacher, Subterahertz hypersound attenuation in silica glass studied via picosecond acoustics. Phys. Rev. B 83(1), 014204 (2011)

    ADS  Google Scholar 

  36. N.F. Mott, E.F. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  37. J. Wang, C. Guo, Long-lived coherent traveling acoustic pulses induced by femtosecond laser pulses. Solid State Commun. 144(5–6), 198 (2007)

    ADS  Google Scholar 

  38. K. Ishioka, A. Rustagi, U. Höfer, H. Petek, C.J. Stanton, Intrinsic coherent acoustic phonons in the indirect band gap semiconductors Si and GaP. Phys. Rev. B 95(3), 035205 (2017)

    ADS  Google Scholar 

  39. A. Baydin, R. Gatamov, H. Krzyzanowska, C.J. Stanton, N. Tolk, Energy-dependent amplitude of Brillouin oscillations in GaP. Phys. Rev. B 99(16), 165202 (2019)

    ADS  Google Scholar 

  40. H.N. Lin, R.J. Stoner, H.J. Maris, J. Tauc, Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry. J. Appl. Phys. 69(7), 3816 (1991)

    ADS  Google Scholar 

  41. G. Baldi, P. Benassi, L.E. Bove, S. Caponi, E. Fabiani, D. Fioretto, A. Fontana, A. Giugni, M. Nardone, M. Sampoli, F. Scarponi, Dynamic-to-static crossover in the acoustic attenuation of v-GeO2. EPL 78(3), 36001 (2007)

    ADS  Google Scholar 

  42. B. Rufflé, M. Foret, E. Courtens, R. Vacher, G. Monaco, Observation of the onset of strong scattering on high frequency acoustic phonons in densified silica glass. Phys. Rev. Lett. 90(9), 095502 (2003)

    ADS  Google Scholar 

  43. B. Rufflé, G. Guimbretiére, E. Courtens, R. Vacher, G. Monaco, Glass-specific behavior in the damping of acousticlike vibrations. Phys. Rev. Lett. 96(4), 045502 (2006)

    ADS  Google Scholar 

  44. C. Masciovecchio, G. Baldi, S. Caponi, L. Comez, S. Di Fonzo, D. Fioretto, A. Fontana, A. Gessini, S.C. Santucci, F. Sette, G. Viliani, P. Vilmercati, G. Ruocco, Evidence for a crossover in the frequency dependence of the acoustic attenuation in vitreous silica. Phys. Rev. Lett. 97(3), 035501 (2006)

    ADS  Google Scholar 

  45. R. Vacher, S. Ayrinhac, M. Foret, B. Rufflé, E. Courtens, Finite size effects in Brillouin scattering from silica glass. Phys. Rev. B 74(1), 012203 (2006)

    ADS  Google Scholar 

  46. P. Benassi, S. Caponi, R. Eramo, A. Fontana, A. Giugni, M. Nardone, M. Sampoli, G. Viliani, Sound attenuation in a unexplored frequency region: Brillouin ultraviolet light scattering measurements in v-SiO2. Phys. Rev. B 71(17), 172201 (2005)

    ADS  Google Scholar 

  47. C. Masciovecchio, A. Gessini, S. Di Fonzo, L. Comez, S.C. Santucci, D. Fioretto, Inelastic ultraviolet scattering from high frequency acoustic modes in glasses. Phys. Rev. Lett. 92(24), 247401 (2004)

    ADS  Google Scholar 

  48. A. Devos, M. Foret, S. Ayrinhac, P. Emery, B. Rufflé, Hypersound damping in vitreous silica measured by picosecond acoustics. Phys. Rev. B 77(10), 100201 (2008)

    ADS  Google Scholar 

  49. C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, T. Scopigno, Acoustic dynamics of network-forming glasses at mesoscopic wavelengths. Nat. Commun. 4(1), 1793 (2013)

    ADS  Google Scholar 

  50. E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, T. Scopigno, Visualizing coherent phonon propagation in the 100 GHz range: a broadband picosecond acoustics approach. Appl. Phys. Lett. 98(1), 011901 (2011)

    ADS  Google Scholar 

  51. J. Jäckle, L. Piché, W. Arnold, S. Hunklinger, Elastic effects of structural relaxation in glasses at low temperatures. J. Non Cryst. Solids 20(3), 365 (1976)

    ADS  Google Scholar 

  52. K.S. Gilkoy, W.A. Phillips, An asymmetric double-well potential model for structural relaxation processes in amorphous materials. Philos. Mag. B Phys. Condens. Matter 43(5), 735 (1981)

    Google Scholar 

  53. U. Buchenau, Y.M. Galperin, V.L. Gurevich, D.A. Parshin, M.A. Ramos, H.R. Schober, Interaction of soft modes and sound waves in glasses. Phys. Rev. B 46(5), 2798 (1992)

    ADS  Google Scholar 

  54. G. Baldi, V.M. Giordano, G. Monaco, B. Ruta, Sound attenuation at terahertz frequencies and the boson peak of vitreous silica. Phys. Rev. Lett. 104(19), 195501 (2010)

    ADS  Google Scholar 

  55. Y.C. Wen, S.H. Guol, H.P. Chen, J.K. Sheu, C.K. Sun, Femtosecond ultrasonic spectroscopy using a piezoelectric nanolayer: hypersound attenuation in vitreous silica films. Appl. Phys. Lett. 99(5), 051913 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Région Auvergne-Rhône-Alpes for its equipment financial support within the Optolyse CPER 2015-20 project framework and the ANR project MIXUP (ANR-18-CE39-0010). Yaya Lefkir from Hubert Curien Laboratory is thanked for STEM characterizations and David Troadec from IEMN (France) for the preparation of the FIB lamella.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Corresponding author

Correspondence to Nathalie Destouches.

Ethics declarations

Conflict of interest statement

The authors declare no conflicts of interest regarding this article.

Additional information

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine, Lionel Poisson.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information

The details about the laser-induced nanoparticle reshaping experiment, the sample preparation and characterization methods, the dielectric function of N-BK7 glass and its photon energy derivative, and the transmittance spectra of the samples are provided. (PDF 291 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eles, B., Crut, A., Del Fatti, N. et al. Coherent acoustic pulse emission by ensembles of plasmonic nanoparticles. Eur. Phys. J. Spec. Top. 232, 2221–2230 (2023). https://doi.org/10.1140/epjs/s11734-023-00811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00811-x

Navigation