Skip to main content
Log in

FAB10: a user-oriented bandwidth-tunable extreme ultraviolet lightsource for investigations of femtosecond to attosecond dynamics in gas and condensed phases

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present the commissioning of the FAB10 beamline (Femtosecond to Attosecond Beamline at 10 kHz repetition rate) that has been developped and operated in the last few years at the ATTOLab facility of Paris-Saclay University. Based on the high harmonic generation process, the beamline is dedicated to investigations of ultrafast dynamics in a broad variety of systems ranging from gas phase to condensed matter in pump-probe arrangements. Its design and operation has been strongly influenced by both the laser and the large scale instruments communities, which makes it unique in several aspects. In particular, it is possible to tune the extreme ultraviolet (XUV, 10–100 eV) bandwidth from 0.2 to 20 eV – with corresponding pulse duration from 30 to 0.3 femtoseconds (fs) – thanks to an original and fully automated XUV spectral filter with three operation modes. After a general overview of the beamline features, each of those operation modes is described, characterized and illustrated with commissioning experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availibility statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Ferray, A. L’Huillier, X.F. Li, G. Mainfray, C. Manus, Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, 31 (1988). https://doi.org/10.1088/0953-4075/21/3/001

    Article  Google Scholar 

  2. A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4(4), 595–601 (1987). https://doi.org/10.1364/JOSAB.4.000595

    Article  ADS  Google Scholar 

  3. K. Holldack, J. Bahrdt, A. Balzer, U. Bovensiepen, M. Brzhezinskaya, A. Erko, A. Eschenlohr, R. Follath, A. Firsov, W. Frentrup, L. Le Guyader, T. Kachel, P. Kuske, R. Mitzner, R. Müller, N. Pontius, T. Quast, I. Radu, J.-S. Schmidt, C. Schüßler-Langeheine, M. Sperling, C. Stamm, C. Trabant, A. Föhlisch, FemtoSpeX: a versatile optical pump-soft X-ray probe facility with 100fs X-ray pulses of variable polarization. J. Synchrotron Radiat. 21(5), 1090–1104 (2014). https://doi.org/10.1107/S1600577514012247

    Article  Google Scholar 

  4. P. Prigent, P. Hollander, M. Labat, M.E. Couprie, J.L. Marlats, C. Laulhé, J. Luning, T. Moreno, P. Morin, A. Nadji, F. Polack, S. Ravy, M. Silly, F. Sirotti, Progress on the Femto-Slicing Project at the Synchrotron SOLEIL. J. Phys: Conf. Ser. 425(7), 072022 (2013). https://doi.org/10.1088/1742-6596/425/7/072022

    Article  Google Scholar 

  5. M.G. Silly, T. Ferté, M.A. Tordeux, D. Pierucci, N. Beaulieu, C. Chauvet, F. Pressacco, F. Sirotti, H. Popescu, V. Lopez-Flores, M. Tortarolo, M. Sacchi, N. Jaouen, P. Hollander, J.P. Ricaud, N. Bergeard, C. Boeglin, B. Tudu, R. Delaunay, J. Luning, G. Malinowski, M. Hehn, C. Baumier, F. Fortuna, D. Krizmancic, L. Stebel, R. Sergo, G. Cautero, Pump\(-\)probe experiments at the TEMPO beamline using the low-\(\alpha\) operation mode of Synchrotron SOLEIL. J. Synchrotron Radiat. 24(4), 886–897 (2017). https://doi.org/10.1107/S1600577517007913

    Article  Google Scholar 

  6. P.K. Maroju, C. Grazioli, M.D. Fraia, M. Moioli, D. Ertel, H. Ahmadi, O. Plekan, P. Finetti, E. Allaria, L. Giannessi, G.D. Ninno, C. Spezzani, G. Penco, S. Spampinati, A. Demidovich, M.B. Danailov, R. Borghes, G. Kourousias, C.E.S.D. Reis, F. Billé, A.A. Lutman, R.J. Squibb, R. Feifel, P. Carpeggiani, M. Reduzzi, T. Mazza, M. Meyer, S. Bengtsson, N. Ibrakovic, E.R. Simpson, J. Mauritsson, T. Csizmadia, M. Dumergue, S. Kühn, H.N. Gopalakrishna, D. You, K. Ueda, M. Labeye, J.E. Bækhøj, K.J. Schafer, E.V. Gryzlova, A.N. Grum-Grzhimailo, K.C. Prince, C. Callegari, G. Sansone, Attosecond pulse shaping using a seeded free-electron laser. Nature 578(7795), 386–391 (2020). https://doi.org/10.1038/s41586-020-2005-6

    Article  ADS  Google Scholar 

  7. D.C. Haynes, M. Wurzer, A. Schletter, A. Al-Haddad, C. Blaga, C. Bostedt, J. Bozek, H. Bromberger, M. Bucher, A. Camper, S. Carron, R. Coffee, J.T. Costello, L.F. DiMauro, Y. Ding, K. Ferguson, I. Grguraš, W. Helml, M.C. Hoffmann, M. Ilchen, S. Jalas, N.M. Kabachnik, A.K. Kazansky, R. Kienberger, A.R. Maier, T. Maxwell, T. Mazza, M. Meyer, H. Park, J. Robinson, C. Roedig, H. Schlarb, R. Singla, F. Tellkamp, P.A. Walker, K. Zhang, G. Doumy, C. Behrens, A.L. Cavalieri, Clocking auger electrons. Nat. Phys. 17(4), 512–518 (2021). https://doi.org/10.1038/s41567-020-01111-0

    Article  Google Scholar 

  8. J. Duris, S. Li, T. Driver, E.G. Champenois, J.P. MacArthur, A.A. Lutman, Z. Zhang, P. Rosenberger, J.W. Aldrich, R. Coffee, G. Coslovich, F.-J. Decker, J.M. Glownia, G. Hartmann, W. Helml, A. Kamalov, J. Knurr, J. Krzywinski, M.-F. Lin, J.P. Marangos, M. Nantel, A. Natan, J.T. O’Neal, N. Shivaram, P. Walter, A.L. Wang, J.J. Welch, T.J.A. Wolf, J.Z. Xu, M.F. Kling, P.H. Bucksbaum, A. Zholents, Z. Huang, J.P. Cryan, A. Marinelli, Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 14(1), 30–36 (2020). https://doi.org/10.1038/s41566-019-0549-5

    Article  Google Scholar 

  9. A. Mandal, M.S. Sidhu, J.M. Rost, T. Pfeifer, K.P. Singh, Attosecond delay lines: design, characterization and applications. The European Physical Journal Special Topics 230(23), 4195–4213 (2021). https://doi.org/10.1140/epjs/s11734-021-00261-3

    Article  ADS  Google Scholar 

  10. S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle, T. Csizmadia, B. Farkas, B. Major, Z. Várallyay, E. Cormier, M. Kalashnikov, F. Calegari, M. Devetta, F. Frassetto, E. Månsson, L. Poletto, S. Stagira, C. Vozzi, M. Nisoli, P. Rudawski, S. Maclot, F. Campi, H. Wikmark, C.L. Arnold, C.M. Heyl, P. Johnsson, A. L’Huillier, R. Lopez-Martens, S. Haessler, M. Bocoum, F. Boehle, A. Vernier, G. Iaquaniello, E. Skantzakis, N. Papadakis, C. Kalpouzos, P. Tzallas, F. Lépine, D. Charalambidis, K. Varjú, K. Osvay, G. Sansone, The ELI-ALPS facility: the next generation of attosecond sources. J. Phys. B: At. Mol. Opt. Phys. 50(13), 132002 (2017). https://doi.org/10.1088/1361-6455/aa6ee8

    Article  ADS  Google Scholar 

  11. I.C.E. Turcu, E. Springate, C.A. Froud, C.M. Cacho, J.L. Collier, W.A. Bryan, G.R.A.J. Nemeth, J.P. Marangos, J.W.G. Tisch, R. Torres, T. Siegel, L. Brugnera, J.G. Underwood, I. Procino, W.R. Newell, C. Altucci, R. Velotta, R.B. King, J.D. Alexander, C.R. Calvert, O. Kelly, J.B. Greenwood, I.D. Williams, A. Cavalleri, J.C. Petersen, N. Dean, S.S. Dhesi, L. Poletto, P. Villoresi, F. Frassetto, S. Bonora, M.D. Roper, Ultrafast science and development at the Artemis facility 7469, 746902 (2010). https://doi.org/10.1117/12.867540

    Article  Google Scholar 

  12. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219 (1985). https://doi.org/10.1016/0030-4018(85)90151-8

    Article  ADS  Google Scholar 

  13. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, G. Steinmeyer, Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nat. Photonics 4(7), 462–465 (2010). https://doi.org/10.1038/nphoton.2010.91

    Article  ADS  Google Scholar 

  14. G. Cheriaux, P. Rousseau, F. Salin, J.P. Chambaret, B. Walker, L.F. Dimauro, Aberration-free stretcher design for ultrashort-pulse amplification. Opt. Lett. 21(6), 414–416 (1996). https://doi.org/10.1364/OL.21.000414

    Article  ADS  Google Scholar 

  15. J.-F. Hergott, O. Tcherbakoff, P.-M. Paul, P. Demengeot, M. Perdrix, F. Lepetit, D. Garzella, D. Guillaumet, M. Comte, P.D. Oliveira, O. Gobert, Carrier-Envelope Phase stabilization of a 20 W, grating based, chirped-pulse amplified laser, using Electro-Optic effect in a LiNbO\(_{\rm 3 }\) crystal. Opt. Express 19(21), 19935–19941 (2011). https://doi.org/10.1364/OE.19.019935

    Article  ADS  Google Scholar 

  16. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Opt. Lett. 25(8), 575–577 (2000). https://doi.org/10.1364/OL.25.000575

    Article  ADS  Google Scholar 

  17. A. Golinelli, X. Chen, E. Gontier, B. Bussière, O. Tcherbakoff, M. Natile, P. D’Oliveira, P.-M. Paul, J.-F. Hergott, Original Ti: Sa 10 kHz front-end design delivering 17 fs, 170 mrad CEP stabilized pulses up to 5 W. Opt. Lett. 42(12), 2326–2329 (2017). https://doi.org/10.1364/OL.42.002326

    Article  ADS  Google Scholar 

  18. D.F. Hotz, Gain Narrowing in a Laser Amplifier. Appl. Opt. 4(5), 527–530 (1965). https://doi.org/10.1364/AO.4.000527

    Article  ADS  Google Scholar 

  19. T. Oksenhendler, D. Kaplan, P. Tournois, G.M. Greetham, F. Estable, Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifiers. Appl. Phys. B 83(4), 491 (2006). https://doi.org/10.1007/s00340-006-2231-0

    Article  ADS  Google Scholar 

  20. A. Golinelli, X. Chen, B. Bussière, E. Gontier, P.-M. Paul, O. Tcherbakoff, P. D’Oliveira, J.-F. Hergott, CEP-stabilized, sub-18 fs, 10 kHz and TW-class 1 kHz dual output Ti: Sa laser with wavelength tunability option. Opt. Express 27(10), 13624–13636 (2019). https://doi.org/10.1364/OE.27.013624

    Article  ADS  Google Scholar 

  21. C. Feng, J.-F. Hergott, P.-M. Paul, X. Chen, O. Tcherbakoff, M. Comte, O. Gobert, M. Reduzzi, F. Calegari, C. Manzoni, M. Nisoli, G. Sansone, Complete analog control of the carrier-envelope-phase of a high-power laser amplifier. Opt. Express 21(21), 25248–25256 (2013). https://doi.org/10.1364/OE.21.025248

    Article  ADS  Google Scholar 

  22. J. Squier, C.P.J. Barty, F. Salin, C.L. Blanc, S. Kane, Use of mismatched grating pairs in chirped-pulse amplification systems. Appl. Opt. 37(9), 1638–1641 (1998). https://doi.org/10.1364/AO.37.001638

    Article  ADS  Google Scholar 

  23. S.J. Weber, B. Manschwetus, M. Billon, M. Böttcher, M. Bougeard, P. Breger, M. Géléoc, V. Gruson, A. Huetz, N. Lin, Y.J. Picard, T. Ruchon, P. Salières, B. Carré, Flexible attosecond beamline for high harmonic spectroscopy and xuv/near-ir pump probe experiments requiring long acquisition times. Review of Scientific Instruments 86(3) (2015). https://doi.org/10.1063/1.4914464

  24. C. Alexandridi, D. Platzer, L. Barreau, D. Busto, S. Zhong, M. Turconi, L. Neoričić, H. Laurell, C.L. Arnold, A. Borot, J.-F. Hergott, O. Tcherbakoff, M. Lejman, M. Gisselbrecht, E. Lindroth, A. L’Huillier, J.M. Dahlström, P. Salières, Attosecond photoionization dynamics in the vicinity of the Cooper minima in argon. Physical Review Research 3(1), 012012 (2021). https://doi.org/10.1103/PhysRevResearch.3.L012012

    Article  ADS  Google Scholar 

  25. M. Luttmann, D. Bresteau, J.-F. Hergott, O. Tcherbakoff, T. Ruchon, In situ sub-50-attosecond active stabilization of the delay between infrared and extreme-ultraviolet light pulses. Physical Review Applied 15(3) (2021). https://doi.org/10.1103/physrevapplied.15.034036

  26. https://www.smaract.com/index-en

  27. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H.G. Muller, P. Agostini, Observation of a Train of Attosecond Pulses from High Harmonic Generation. Science 292, 1689–1692 (2001). https://doi.org/10.1126/science.1059413

    Article  ADS  Google Scholar 

  28. C. Grazioli, C. Callegari, A. Ciavardini, M. Coreno, F. Frassetto, D. Gauthier, D. Golob, R. Ivanov, A. Kivimäki, B. Mahieu, B. Bučar, M. Merhar, P. Miotti, L. Poletto, E. Polo, B. Ressel, C. Spezzani, G. De Ninno, CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science. Rev. Sci. Instrum. 85(2), 23104 (2014). https://doi.org/10.1063/1.4864298

    Article  Google Scholar 

  29. https://vuo.elettra.eu/services/elements/data/au.txt

  30. P. Ye, L. Gulyás Oldal, T. Csizmadia, Z. Filus, T. Grósz, P. Jójárt, I. Seres, Z. Bengery, B. Gilicze, S. Kahaly, K. Varjú, B. Major, High-Flux 100 kHz Attosecond Pulse Source Driven by a High-Average Power Annular Laser Beam. Ultrafast Science 2022 (2022). https://doi.org/10.34133/2022/9823783

  31. Artemis 1 kHz XUV beamline with monochromator. https://www.clf.stfc.ac.uk/Pages/XUV-beamlines.aspx

  32. https://www.crytur.com/

  33. P. Kruit, F.H. Read, Magnetic field paralleliser for \(2\pi\) electron-spectrometer and electron-image magnifier. J. Phys. E 16, 313 (1983). https://doi.org/10.1088/0022-3735/16/4/016

    Article  ADS  Google Scholar 

  34. C. Bourassin-Bouchet, L. Barreau, V. Gruson, J.-F. Hergott, F. Quéré, P. Salières, T. Ruchon, Quantifying decoherence in attosecond metrology. Physical Review X 10(3) (2020). https://doi.org/10.1103/physrevx.10.031048

  35. J. Joseph, F. Holzmeier, D. Bresteau, C. Spezzani, T. Ruchon, J.F. Hergott, O. Tcherbakoff, P. D’Oliveira, J.C. Houver, D. Dowek, Angle-resolved studies of XUV-IR two-photon ionization in the RABBITT scheme. J. Phys. B: At. Mol. Opt. Phys. 53(18), 184007 (2020). https://doi.org/10.1088/1361-6455/ab9f0d

    Article  ADS  Google Scholar 

  36. S.J. Weber, PyMoDAQ: An open-source Python-based software for modular data acquisition. Rev. Sci. Instrum. 92(4), 045104 (2021). https://doi.org/10.1063/5.0032116

    Article  ADS  Google Scholar 

  37. https://www.cinel.com/cinel/

  38. F. Senf, U. Flechsig, F. Eggenstein, W. Gudat, R. Klein, H. Rabus, G. Ulm, A plane-grating monochromator beamline for the PTB undulators at BESSY II. J. Synchrotron Radiat. 5(3), 780–782 (1998). https://doi.org/10.1107/S0909049597020323

    Article  Google Scholar 

  39. H. Petersen, C. Jung, C. Hellwig, W.B. Peatman, W. Gudat, Review of plane grating focusing for soft x-ray monochromators. Rev. Sci. Instrum. 66(1), 1–14 (1995). https://doi.org/10.1063/1.1145258

    Article  ADS  Google Scholar 

  40. F. Frassetto, C. Cacho, C.A. Froud, I.C.E. Turcu, P. Villoresi, W.A. Bryan, E. Springate, L. Poletto, Single-grating monochromator for extreme-ultraviolet ultrashort pulses. Opt. Express 19(20), 19169–19181 (2011). https://doi.org/10.1364/OE.19.019169

    Article  ADS  Google Scholar 

  41. The Abbe condition states that the coma aberration can be limited when the sines of incoming and outgoing beams change proportionally in the aperture of the system

  42. L. Poletto, F. Frassetto, Time-preserving grating monochromators for ultrafast extreme-ultraviolet pulses. Appl. Opt. 49(28), 5465–5473 (2010). https://doi.org/10.1364/AO.49.005465

    Article  ADS  Google Scholar 

  43. C. Corder, P. Zhao, J. Bakalis, X. Li, M.D. Kershis, A.R. Muraca, M.G. White, T.K. Allison, Ultrafast extreme ultraviolet photoemission without space charge. Structural Dynamics 5(5), 054301 (2018). https://doi.org/10.1063/1.5045578

    Article  Google Scholar 

  44. J. Caillaux, D. Bresteau, T. Ruchon, F. Cilento, F. Parmigiani, I. Vadillotorre, C. Spezzani, O. Tcherbakoff, P. D’Oliveira, P. Salière, F. Polack, D. Dennetiere, V. Brouet, M. Marsi, Ultrafast electron dynamics in strontium iridate (Conference Presentation) 11346 (2020). https://doi.org/10.1117/12.2555039

  45. M. Fanciulli, J. Schusser, M.-I. Lee, Z.E. Youbi, O. Heckmann, M.C. Richter, C. Cacho, C. Spezzani, D. Bresteau, J.-F.m.c. Hergott, P. D’Oliveira, O. Tcherbakoff, T. Ruchon, J. Minár, K. Hricovini, Spin, time, and angle resolved photoemission spectroscopy on WTe2. Phys. Rev. Research 2, 013261 (2020). https://doi.org/10.1103/PhysRevResearch.2.013261

  46. F.M. Böttcher, B. Manschwetus, H. Rottke, N. Zhavoronkov, Z. Ansari, W. Sandner, Interferometric long-term stabilization of a delay line: a tool for pump-probe photoelectron-photoion-coincidence spectroscopy on the attosecond time scale. Appl. Phys. B 91(2), 287–293 (2008). https://doi.org/10.1007/s00340-008-2987-5

    Article  ADS  Google Scholar 

  47. C. Bourassin-Bouchet, S. de Rossi, J. Wang, E. Meltchakov, A. Giglia, N. Mahne, S. Nannarone, F. Delmotte, Shaping of single-cycle sub-50-attosecond pulses with multilayer mirrors. New J. Phys. 14(2), 023040 (2012). https://doi.org/10.1088/1367-2630/14/2/023040

    Article  ADS  Google Scholar 

  48. F. Delmotte, M. Dehlinger, C. Bourassin-Bouchet, S. Rossi, A. Jerome, E. Meltchakov, F. Varnière, Multilayer optics for coherent EUV/X-ray laser sources 9589, 29–37 (2015). https://doi.org/10.1117/12.2188048

    Article  Google Scholar 

  49. J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M.-F. Ravet, A. Jérome, Study of normal incidence of three-component multilayer mirrors in the range 20–40 nm. Appl. Opt. 44(3), 384–390 (2005). https://doi.org/10.1364/AO.44.000384

    Article  ADS  Google Scholar 

  50. J. Rebellato, R. Soufli, E. Meltchakov, E. Gullikson, S. de Rossi, F. Delmotte, High efficiency Al/Sc-based multilayer coatings in the EUV wavelength range above 40 nanometers. Opt. Lett. 45(4), 869–872 (2020). https://doi.org/10.1364/OL.384734

    Article  ADS  Google Scholar 

  51. J. Rebellato, R. Soufli, E. Meltchakov, E.M. Gullikson, S. de Rossi, C. Baumier, F. Pallier, F. Delmotte, Optical, structural and aging properties of Al/Sc-based multilayers for the extreme ultraviolet. Thin Solid Films 735, 138873 (2021). https://doi.org/10.1016/j.tsf.2021.138873

    Article  ADS  Google Scholar 

  52. M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmannß, M. Drescher, F. Krausz, Attosecond metrology. Nature 414, 509 (2001). https://doi.org/10.1038/35107000

    Article  ADS  Google Scholar 

  53. C. Bourassin-Bouchet, M.-E. Couprie, Partially coherent ultrafast spectrography. Nature. Communications 6(1), 6465 (2015). https://doi.org/10.1038/ncomms7465

    Article  Google Scholar 

  54. S. Pabst, L. Greenman, P.J. Ho, D.A. Mazziotti, R. Santra, Decoherence in Attosecond Photoionization. Phys. Rev. Lett. 106(5), 053003 (2011). https://doi.org/10.1103/PhysRevLett.106.053003

    Article  ADS  Google Scholar 

  55. S. Carlström, J. Mauritsson, K.J. Schafer, A. L’Huillier, M. Gisselbrecht, Quantum coherence in photo-ionisation with tailored XUV pulses. J. Phys. B: At. Mol. Opt. Phys. 51(1), 015201 (2017). https://doi.org/10.1088/1361-6455/aa96e7

    Article  ADS  Google Scholar 

  56. A. Lietard, G. Piani, L. Poisson, B. Soep, J.-M. Mestdagh, S. Aloïse, A. Perrier, D. Jacquemin, M. Takeshita, Competitive direct vs. indirect photochromism dynamics of constrained inverse dithienylethene molecules. Phys. Chem. Chem. Phys. 16(40), 22262–22272 (2014). https://doi.org/10.1039/C4CP02310B

    Article  Google Scholar 

  57. G.A. Garcia, L. Nahon, I. Powis, Two-dimensional charged particle image inversion using a polar basis function expansion. Rev. Sci. Instrum. 75(11), 4989–4996 (2004). https://doi.org/10.1063/1.1807578

    Article  ADS  Google Scholar 

  58. D. Busto, J. Vinbladh, S. Zhong, M. Isinger, S. Nandi, S. Maclot, P. Johnsson, M. Gisselbrecht, A. L’Huillier, E. Lindroth, J.M. Dahlström, Fano’s propensity rule in angle-resolved attosecond pump-probe photoionization. Phys. Rev. Lett. 123, 133201 (2019). https://doi.org/10.1103/PhysRevLett.123.133201

    Article  ADS  Google Scholar 

  59. C. Cirelli, C. Marante, S. Heuser, C. Petersson, Á.J. Galán, L. Argenti, S. Zhong, D. Busto, M. Isinger, S. Nandi et al., Anisotropic photoemission time delays close to a fano resonance. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467-018-03009-1

    Article  Google Scholar 

  60. A. Autuori, D. Platzer, M. Lejman, G. Gallician, L. Maëder, A. Covolo, L. Bosse, M. Dalui, D. Bresteau, J.-F. Hergott, O. Tcherbakoff, H.J.B. Marroux, V. Loriot, F. Lépine, L. Poisson, R. Taïeb, J. Caillat, P. Salières, Anisotropic dynamics of two-photon ionization: An attosecond movie of photoemission. Sci. Adv. 8(12), 7594 (2022). https://doi.org/10.1126/sciadv.abl7594

    Article  Google Scholar 

  61. L. Kasmi, M. Lucchini, L. Castiglioni, P. Kliuiev, J. Osterwalder, M. Hengsberger, L. Gallmann, P. Krüger, U. Keller, Effective mass effect in attosecond electron transport. Optica 4(12), 1492–1497 (2017). https://doi.org/10.1364/OPTICA.4.001492

    Article  ADS  Google Scholar 

  62. S. Heinrich, T. Saule, M. Högner, Y. Cui, V.S. Yakovlev, I. Pupeza, U. Kleineberg, Attosecond intra-valence band dynamics and resonant-photoemission delays in W (110). Nat. Commun. 12(1), 1–10 (2021). https://doi.org/10.1038/s41467-021-23650-7

    Article  Google Scholar 

  63. Z. Tao, C. Chen, T. Szilvási, M. Keller, M. Mavrikakis, H. Kapteyn, M. Murnane, Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353(6294), 62–67 (2016). https://doi.org/10.1126/science.aaf6793

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. M. Lucchini, L. Castiglioni, L. Kasmi, P. Kliuiev, A. Ludwig, M. Greif, J. Osterwalder, M. Hengsberger, L. Gallmann, U. Keller, Light-matter interaction at surfaces in the spatiotemporal limit of macroscopic models. Physical Review Letters 115(13) (2015). https://doi.org/10.1103/physrevlett.115.137401

  65. R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, U. Keller, Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry. Optica 2(5), 405 (2015). https://doi.org/10.1364/optica.2.000405

    Article  ADS  Google Scholar 

  66. C. Chen, Z. Tao, A. Carr, P. Matyba, T. Szilvási, S. Emmerich, M. Piecuch, M. Keller, D. Zusin, S. Eich, M. Rollinger, W. You, S. Mathias, U. Thumm, M. Mavrikakis, M. Aeschlimann, P.M. Oppeneer, H. Kapteyn, M. Murnane, Distinguishing attosecond electron-electron scattering and screening in transition metals. Proc. Natl. Acad. Sci. 114(27), 5300–5307 (2017). https://doi.org/10.1073/pnas.1706466114

    Article  Google Scholar 

  67. G. Saathoff, L. Miaja-Avila, M. Aeschlimann, M.M. Murnane, H.C. Kapteyn, Laser-assisted photoemission from surfaces. Phys. Rev. A 77(2), 022903 (2008). https://doi.org/10.1103/PhysRevA.77.022903

    Article  ADS  Google Scholar 

  68. M. Hanna, F. Guichard, N. Daher, Q. Bournet, X. Délen, P. Georges, Nonlinear Optics in Multipass Cells. Laser & Photonics Reviews 15(12), 2100220 (2021). https://doi.org/10.1002/lpor.202100220

    Article  ADS  Google Scholar 

  69. L. Daniault, Z. Cheng, J. Kaur, J.-F. Hergott, F. Réau, O. Tcherbakoff, N. Daher, X. Délen, M. Hanna, R. Lopez-Martens, Single-stage few-cycle nonlinear compression of milliJoule energy Ti: Sa femtosecond pulses in a multipass cell. Opt. Lett. 46(20), 5264–5267 (2021). https://doi.org/10.1364/OL.442707

    Article  ADS  Google Scholar 

  70. M. Luttmann, D. Bresteau, T. Ruchon, Pump-Probe Delay Controlled by Laser-dressed Ionization with Isolated Attosecond Pulses 255 (2021). https://doi.org/10.1051/epjconf/202125513004

  71. A.G. Ciriolo, R.M. Váázquez, V. Tosa, A. Frezzotti, G. Crippa, M. Devetta, D. Faccialá, F. Frassetto, L. Poletto, A. Pusala, C. Vozzi, R. Osellame, S. Stagira, High-order harmonic generation in a microfluidic glass device. Journal of Physics: Photonics 2(2), 024005 (2020). https://doi.org/10.1088/2515-7647/ab7d81

    Article  ADS  Google Scholar 

  72. M. Fanciulli, H. Volfová, S. Muff, J. Braun, H. Ebert, J. Minár, U. Heinzmann, J.H. Dil, Spin Polarization and Attosecond Time Delay in Photoemission from Spin Degenerate States of Solids. Phys. Rev. Lett. 118(6), 067402 (2017). https://doi.org/10.1103/PhysRevLett.118.067402

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We dedicate this article to the memory of our esteemed colleague and friend Bertrand Carré, whose visionary insight into attosecond science led to the construction of the ATTOLab facility, and to the design of the FAB10 beamline.

This research was supported by Agence Nationale de la Recherche, grant nos. ANR-11-EQPX0005-ATTOLAB, ANR-20-CE30-0007-02-DECAP, ANR-14-CE32-0010–XSTASE, and ANR-10-LABX-0039-PALM; Région Ile de France SESAME-2015-Pulse-X and SESAME-2012-ATTOLITE; Université Paris-Saclay LIDEX-2014-OPT2X ; and Laserlab-Europe EU-H2020-871124.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Bresteau or T. Ruchon.

Additional information

Ultrafast Phenomena from attosecond to picosecond timescales: theory and experiments. Guest editors: Franck Lépine, Lionel Poisson.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresteau, D., Spezzani, C., Tcherbakoff, O. et al. FAB10: a user-oriented bandwidth-tunable extreme ultraviolet lightsource for investigations of femtosecond to attosecond dynamics in gas and condensed phases. Eur. Phys. J. Spec. Top. 232, 2011–2029 (2023). https://doi.org/10.1140/epjs/s11734-022-00752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00752-x

Navigation