Skip to main content
Log in

Analogy circuit synthesis and dynamics confirmation of a bipolar pulse current-forced 2D Wilson neuron model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Neurons can exhibit abundant electrical activities in response to various externally applied stimuli, which can lay the groundwork for widening their use in neuron-based engineering applications. This paper presents the dynamical behaviors and analogy circuit-based confirmations in a bipolar pulse (BP) current-forced two-dimensional (2D) Wilson neuron model. Due to the existence of BP current, the proposed 2D neuron model has periodically switchable equilibrium states. The BP current-associated dynamical behaviors, including subthreshold oscillation (STO), periodic limit cycle, chaos, and antimonotonicity phenomenon, are numerically revealed by common dynamical analyses. Note that the electrical activity behaves a close dependence on the frequency of the externally applied BP current. Thereafter, an analog circuit is optimally synthesized to implement the 2D Wilson neuron model by utilizing the off-the-shelf discrete components, upon which the Multisim 12.0-based circuit simulations and hardware experiments are executed. It is revealed that the circuit-simulated and experimentally captured results well confirm the numerically simulated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  2. J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)

    Article  Google Scholar 

  3. R. FitzHugh, J. Appl. Physiol. 25, 628 (1968)

    Article  Google Scholar 

  4. C. Morris, H. Lecar, Biophys. J. 35, 193 (1981)

    Article  ADS  Google Scholar 

  5. T.R. Chay, Physica D 16, 233 (1985)

    Article  ADS  Google Scholar 

  6. H.R. Wilson, J. Theor. Biol. 200, 375 (1999)

    Article  ADS  Google Scholar 

  7. R. FitzHugh, Biophys. J. 1, 445 (1961)

    Article  ADS  Google Scholar 

  8. J.L. Hindmarsh, R.M. Rose, Nature 296, 162 (1982)

    Article  ADS  Google Scholar 

  9. S. Zhang, J.H. Zheng, X.P. Wang, Z.G. Zeng, Chaos 31, 011101 (2021)

    Article  ADS  Google Scholar 

  10. X.L. Song, H.T. Wang, Y. Chen, Nonlinear Dyn. 96, 2341 (2019)

    Article  Google Scholar 

  11. M.Y. Ge, Y. Jia, Y. Xu, L. Yang, Nonliear Dyn. 91, 515 (2018)

    Article  Google Scholar 

  12. X.Y. Hu, C.X. Liu, L. Liu, J. Ni, S. Li, Nonlinear Dyn. 84, 2317 (2016)

    Article  Google Scholar 

  13. G.D. Ren, P. Zhou, J. Ma, A. Alsaedi, B. Ahmad, Int. J. Bifurc. Chaos 27, 1750187 (2017)

    Article  Google Scholar 

  14. S. Mostaghimi, F. Nazarimehr, S. Jafari, J. Ma, Appl. Math. Comput. 348, 42 (2019)

    MathSciNet  Google Scholar 

  15. H. Bao, W.B. Liu, M. Chen, Nonlinear Dyn. 96, 1879 (2019)

    Article  Google Scholar 

  16. F.Q. Wu, J. Ma, G. Zhang, Appl. Math. Comput. 347, 590 (2019)

    MathSciNet  Google Scholar 

  17. B.C. Bao, A.H. Hu, Q. Xu, H. Bao, H.G. Wu, M. Chen, Nonlinear Dyn. 92, 1695 (2018)

    Article  Google Scholar 

  18. J. Wu, S.J. Ma, Nonlinear Dyn. 96, 1895 (2019)

    Article  Google Scholar 

  19. X.L. Song, H.T. Wang, Y. Chen, Nonlinear Dyn. 94, 141 (2018)

    Article  Google Scholar 

  20. R.K. Upadhyay, C. Paul, A. Mondal, G.K. Vishwakarma, Appl. Math. Comput. 329, 364 (2018)

    Article  MathSciNet  Google Scholar 

  21. Z.Q. Yang, Q.S. Lu, H.G. Gu, W. Ren, Int. J. Bifurc. Chaos 14, 4143 (2004)

    Article  Google Scholar 

  22. Y.G. Yao, J. Ma Cogn. Neurodyn. 12, 343 (2018)

    Article  Google Scholar 

  23. L.L. Lu, Y. Jia, W.H. Liu, L.J. Yang, Complexcity 2017, 7628537 (2017)

    Google Scholar 

  24. M. Bordet, S. Morfu, Chaos Solitons Fractals 54, 82 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. S.K. Thottil, R.P. Ignatius, Nonlinear Dyn. 95, 239 (2018)

    Article  Google Scholar 

  26. H. Bao, A.H. Hu, W.B. Liu, Int. J. Bifurc. Chaos 29, 1950006 (2019)

    Article  Google Scholar 

  27. Y. Qi, A.L. Watts, J.W. Kim, P.A. Robinson, Biol. Cybern. 107, 15 (2013)

    Article  Google Scholar 

  28. Z. Zhao, J.W. Kim, P.A. Robinson, C.J. Rennie, J. Comput. Neurosci. 36, 81 (2013)

    Article  Google Scholar 

  29. Y. Liu, J. Ma, Y. Xu, Y. Jia, Int. J. Bifurc. Chaos 29, 1950156 (2009)

    Article  Google Scholar 

  30. D.A. Steyn-Ross, M.L. Steyn-Ross, M.T. Wilson, J.W. Sleigh, Phys. Rev. E 74, 051920 (2006)

    Article  ADS  Google Scholar 

  31. M.L. Steyn-Ross, D.A. Steyn-Ross, Phys. Rev. E 93, 022402 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Mondal, R.K. Upadhyay, J. Ma, B.K. Yadav, S.K. Sharma, A. Mondal, Cogn. Neurodyn. 13, 393407 (2019)

    Article  Google Scholar 

  33. M.A. Imani, A. Ahmadi, M.R. Malekshahi, S. Haghiri, IEEE Trans. Biomed. Circ. Syst. 12, 1431 (2018)

    Article  Google Scholar 

  34. M. Nouri, M. Hayati, T.S. Gotarredona, D. Abbott, IEEE Trans. Circ. Syst. II: Express Briefs 66, 136 (2019)

    Google Scholar 

  35. S. Zhang, J.H. Zheng, X.P. Wang, Z.G. Zeng, S.B. He, Nonlinear Dyn. 102, 2821 (2020)

    Article  Google Scholar 

  36. K. Rajagopal, J.M. Munoz-Pacheco, V.T. Pham, D.V. Hoang, F.E. Alsaadi, F.E. Alsaadi, Eur. Phys. J. Special Topics 227, 811 (2018)

    Article  ADS  Google Scholar 

  37. Y.N. Jiang, P. Huang, D.B. Zhu, Z. Zhou, R.Z. Han, L.F. Liu, X.Y. Liu, J.F. Kang, IEEE Trans. Circ. Syst. I: Regular Papers 65, 2726 (2018)

    Google Scholar 

  38. X.Y. Hu, C.X. Liu, Nonlinear Dyn. 97, 1721 (2019)

    Article  Google Scholar 

  39. G. Wainrib, M. Thieullen, K. Pakdaman, J. Comput. Neurosci. 32, 327 (2012)

    Article  MathSciNet  Google Scholar 

  40. Y. Xu, J. Ma, X. Zhan, L.J. Yang, Y. Jia, Cogn. Neurodyn. 13, 601 (2019)

    Article  Google Scholar 

  41. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)

  42. S.P. Dawson, C. Grebogi, J.A. Yorke, I. Kan, H. Kocak, Phys. Lett. A 162, 249 (1992)

  43. L. Zhou, C.H. Wang, X. Zhang, W. Yao, Int. J. Bifurc. Chaos 28, 1850050 (2018)

    Article  Google Scholar 

  44. J. Kengne, A.N. Negou, D. Tchiotsop, Nonlinear Dyn. 88, 2589 (2017)

    Article  Google Scholar 

  45. I. Manimehan, P. Philominathan, Chaos Solitons Fractals 45, 1501 (2012)

    Article  ADS  Google Scholar 

  46. B.C. Bao, H. Bao, N. Wang, M. Chen, Q. Xu, Chaos Solitons Fractals 94, 102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Zhang, Y.C. Zeng, Z.J. Li, M.J. Wang, L. Xiong, Chaos 28, 013113 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  48. H.R. Lin, C.H. Wang, Y.C. Sun, W. Yao, Nonlinear Dyn. 100, 3667 (2020)

    Article  Google Scholar 

  49. Q. Xu, Y. Lin, B.C. Bao, M. Chen, Chaos Solitons Fractals 83, 186 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundations of China under Grant Nos. 61801054 and 51777016, the Natural Science Foundations of Jiangsu Province, China under Grant Nos. BK20160282 and BK20191451, and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China under Grant No. KYCX20_2547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Ju, Z., Feng, C. et al. Analogy circuit synthesis and dynamics confirmation of a bipolar pulse current-forced 2D Wilson neuron model. Eur. Phys. J. Spec. Top. 230, 1989–1997 (2021). https://doi.org/10.1140/epjs/s11734-021-00183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00183-0

Navigation