Skip to main content
Log in

Complex dynamics of a predator–prey system with fear and memory in the presence of two discrete delays

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we consider a two-species predator–prey model with fading memory, where the growth rate of prey species is subject to predation induced fear. Growth rate of predator species depends not only on the present density of prey but also on the past densities with diminishing impact. As the societal activities and behavioral practices influence carrying capacity of any species, we consider the density dependent carrying capacity of prey species instead of a constant. As fear on growth rate and societal activities on carrying capacity entail some time lags to show their effect, so we incorporate two delay parameters to corroborate this in the modeling phenomenon. Feasibility criteria of equilibria and their stability analysis are carried out. We observe that fear parameter and predation rate have destabilizing effect on the system’s dynamics, whereas parameter representing intensity of fading memory has stabilizing impact. We also distinguish stability and instability regions in different parametric planes. With increasing value of production factor from negative to positive, stability region decreases. The system also shows multiple stability switching phenomenon with respect to delay parameters. Solutions show chaotic behavior for a range of fear response delay both in the absence and presence of other delay parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

References

  1. A.J. Lotka, Elements of physical biology (Williams and Wilkins Company, Baltimore, 1925)

    MATH  Google Scholar 

  2. V. Volterra, Variations and fluctuations of the number of individuals in animal species living together. Anim. Ecol. 409–448 (1926)

  3. M. Farkas, Stable oscillations in a predator-prey model with time lag. J. Math. Anal. Appl. 102, 175–188 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. R.M. May, Stability and complexity in model ecosystems (Princeton University Press, Princeton, 2019)

    Book  Google Scholar 

  5. M. Verma, A.K. Misra, Modeling the effect of prey refuge on a ratio-dependent predator-prey system with the Allee effect. Bull. Math. Biol. 80(3), 626–656 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Del Monte-Luna, B.W. Brook, M.J. Zetina-Rejyn, V.H. Cruz-Escalona, The carrying capacity of ecosystems. Glob. Ecol. Biogeogr. 13, 485–495 (2004)

    Article  Google Scholar 

  7. V.I. Yukalov, E.P. Yukalova, D. Sornette, Punctuated evolution due to delayed carrying capacity. Phys. D 238, 1752–1767 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M.C. Allen, M. Clinchy, L.Y. Zanette, Fear of predators in free-living wildlife reduces population growth over generations. Proc. Natl. Acad. Sci. 119(7), e2112404119 (2022)

    Article  Google Scholar 

  9. M. Clinchy, M.J. Sheriff, L.Y. Zanette, Predator-induced stress and the ecology of fear. Funct. Ecol. 27(1), 56–65 (2013)

    Article  Google Scholar 

  10. M.J. Sheriff, S.D. Peacor, D. Hawlena, M. Thaker, Non-consumptive predator effects on prey population size: a dearth of evidence. J. Anim. Ecol. 89(6), 1302–1316 (2020)

    Article  Google Scholar 

  11. L.Y. Zanette, A.F. White, M.C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334, 1398–1401 (2011)

    Article  ADS  Google Scholar 

  12. M.J. Sheriff, C.J. Krebs, R. Boonstra, The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J. Anim. Ecol. 78(6), 1249–1258 (2009)

    Article  Google Scholar 

  13. J.P. Suraci, M. Clinchy, L.M. Dill, D. Roberts, L.Y. Zanette, Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698 (2016)

    Article  ADS  Google Scholar 

  14. F. Hua, K.E. Sieving, R.J. Fletcher Jr., C.A. Wright, Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance. Behav. Ecol. 25(3), 509–519 (2014)

    Article  Google Scholar 

  15. J.W. Laundre, L. Hernandez, K.B. Altendorf, Wolves, elk, and bison: reestablishing the ‘landscape of fear‘ in Yellowstone National Park U.S.A. Can. J. Zool. 79, 1401–1409 (2001)

    Article  Google Scholar 

  16. X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Cong, M. Fan, X. Zou, Dynamic of three-species food chain model with fear effect. Commun. Nonlinear Sci. Numer. Simul. 99, 105809 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hossain, N. Pal, S. Samanta, Impact of fear on an eco-epidemiological model. Chaos Solit. Fractals 134, 109718 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Mondal, S. Roy, U. Ghosh, P.K. Tiwari, A systematic study of autonomous and nonautonomous predator-prey models for the combined effects of fear, refuge, cooperation and harvesting. Eur. Phys. J. Plus 137, 724 (2022)

    Article  Google Scholar 

  20. S. Pal, P. Panday, N. Pal, A.K. Misra, J. Chattopadhyay, Dynamical behaviors of a constant prey refuge ratio-dependent prey-predator model with Allee and fear effects. Int. J. Biomath. (2023). https://doi.org/10.1142/S1793524523500109

    Article  MATH  Google Scholar 

  21. S.K. Sasmal, Population dynamics with multiple Allee effects induced by fear factors: a mathematical study on prey-predator interactions. Appl. Math. Model 64, 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. P.K. Tiwari, M. Verma, S. Pal, Y. Kang, A.K. Misra, A delay nonautonomous predator-prey model for the effects of fear, refuge and hunting cooperation. J. Biol. Syst. 29(04), 927–969 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics (Springer Science & Business Media, Cham, 1992)

    Book  MATH  Google Scholar 

  24. N. Macdonald, Timedelay in prey-predator models-II. Bifurcation Theor. Math. Biosci. 33, 227–234 (1977)

    Article  MATH  Google Scholar 

  25. Y. Kuang, Delay differential equations (University of California Press, Berkeley, 2012)

    Google Scholar 

  26. N. Macdonald, Timedelay in prey-predator models. Math. Biosci. 28, 321–330 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay. Math. Model. Nat. Phenom. 4(2), 140–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Dubey, S.K. Sasmal, Chaotic dynamics of a plankton-fish system with fear and its carry over effects in the presence of a discrete delay. Chaos Solit. Fractals 160, 112245 (2022)

    Article  MathSciNet  Google Scholar 

  29. K. Chakraborty, S. Haldar, T.K. Kar, Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure. Nonlinear Dyn. 73(3), 1307–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Kundu, S. Maitra, Dynamics of a delayed predator-prey system with stage structure and cooperation for preys. Chaos Solit. Fractals 114, 453–460 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Y. Song, W. Xiao, X. Qi, Stability and Hopf bifurcation of a predator-prey model with stage structure and time delay for the prey. Nonlinear Dyn. 83(3), 1409–1418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Dubey, A. Kumar, Dynamics of prey-predator model with stage structure in prey including maturation and gestation delays. Nonlinear Dyn. 96, 2653–2679 (2019)

    Article  MATH  Google Scholar 

  33. D. Hu, Y. Li, M. Liu, Y. Bai, Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and Ivlev-type functional response. Nonlinear Dyn. 99(4), 3323–3350 (2020)

    Article  MATH  Google Scholar 

  34. D. Jana, R. Agrawal, R.K. Upadhyay, Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain. Chaos Solit. Fractals 69, 50–63 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. R. Xu, Global dynamics of a predator-prey model with time delay and stage structure for the prey. Nonlinear Anal. Real World Appl. 12(4), 2151–2162 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Dubey, A. Kumar, Stability switching and chaos in a multiple delayed prey-predator model with fear effect and anti-predator behavior. Math. Comput. Simul. 188, 164–192 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. S.K. Nazmul, P.K. Tiwari, S. Pal, M. Martcheva, A delay non-autonomous model for the combined effects of fear, prey refuge, and additional food for predator. J. Biol. Dyn. 15(1), 580–622 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Pal, A. Gupta, A.K. Misra, B. Dubey, Chaotic dynamics of a stage-structured prey-predator system with hunting cooperation and fear in presence of two discrete delays. J. Biol. Syst. 31(2), 611–642 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Panday, N. Pal, S. Samanta, J. Chattopadhyay, Delay induced multiple stability switch and chaos in a predator-prey model with fear effect. Math. Comput. Simul. 172, 134–158 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. J.D. Murray, Mathematical biology I. An introduction (Springer, Cham, 2002)

    Book  MATH  Google Scholar 

  41. B. Sahoo, S. Poria, Dynamics of predator-prey system with fading memory. Appl. Math. Comput. 347, 319–333 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Castro, W. Sierra, E. Stange, Bifurcations in a predator-prey model with general logistic growth and exponential fading memory. Appl. Math. Model. 45, 134–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Gokce, The influence of past in a population system involving intraspecific competition and Allee effect. Eur. Phys. J. Plus 137, 200 (2022)

    Article  Google Scholar 

  44. J.D. Ferreira, C.A.T. Alazar, P.C.C. Tabares, Weak Allee effect in a predator-prey model involving memory with a hump. Nonlinear Anal. Real World Appl. 14, 536–548 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. E. Reimondo, T. Sisk, T.C. Thiemer, Effects of introduced bison on wetlands of the Kaibab Plateau, Arizona. The Colorado Plateau VI: science and management at the landscape scale (University of Arizona Press, Tucson, 2015), pp.120–135

    Google Scholar 

  46. N.C. Pati, B. Ghosh, Delayed carrying capacity induced subcritical and supercritical Hopf bifurcations in a predator-prey system. Math. Comput. Simul. 195, 171–196 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  47. V.I. Yukalov, E.P. Yukalova, D. Sornette, Extreme events in population dynamics with functional carrying capacity. Eur. Phys. J. Spec. Top. 205, 313–354 (2012)

    Article  Google Scholar 

  48. C.S. Holling, Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)

    Article  Google Scholar 

  49. M. Farkas, A. Farkas, G. Szabo, Multiparameter bifurcation diagrams in predator-prey models with time lag. J. Math. Biol. 26, 93–103 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. A.K. Misra, R.K. Rai, Y. Takeuchi, Modeling the effect of time delay in budget allocation to control an epidemic through awareness. Int. J. Biomath. 11(2), 1850027 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Adak, N. Bairagi, R. Hakl, Chaos in delay-induced Leslie-Gower prey-predator-parasite model and its control through prey harvesting. Nonlinear Anal. Real World Appl. 51, 102998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. K.K. Choudhary, B. Dubey, A non-autonomous approach to study the impact of environmental toxins on nutrient-plankton system. Appl. Math. Comput. 458, 128236 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their critical reviews and constructive suggestions that improved the quality and presentation of the paper. Soumitra Pal is thankful to the Council of Scientific and Industrial Research(CSIR), Government of India for providing financial support in the form of senior research fellowship (File.No. 09/013(0915)/2019-EMR-I) and Ashvini Gupta acknowledges the senior research fellowship received from University Grant Commission, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Misra.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Gupta, A., Misra, A.K. et al. Complex dynamics of a predator–prey system with fear and memory in the presence of two discrete delays. Eur. Phys. J. Plus 138, 984 (2023). https://doi.org/10.1140/epjp/s13360-023-04614-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04614-w

Navigation