Skip to main content
Log in

Negative refraction achieved by inducing chirality in monolayer graphene through Raman gain mechanism

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate negative refraction directed by chirality under the condition of Raman gain process in Landau level of graphene. The coupling of magnetic dipole transition with an electric dipole transition leads to Raman gain induced chirality and observe negative refraction with positive permeability. The key idea of our system is to avoid absorption and get negative refraction without the need of simultaneous negative permittivity and permeability. We establish that negative index for refraction may be achieved with minimal absorption by using magnetoelectric cross-coupling to couple two mutually interfering Raman transitions via magnetic-dipole transition. Further, we examine the negative refraction via Doppler-broadened medium. Our proposed scheme may use to develop perfect lenses made from negative index materials that may provide a novel technique to resolve nanoscale objects, with far-reaching practical consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This paper includes all data generated or evaluated during this investigation. All data included in this paper are available upon request by contacting with the corresponding author].

References

  1. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  3. R.A. Shelby, D.R. Smith, S. Shultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  4. A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90, 137401 (2003)

    Article  ADS  Google Scholar 

  5. D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000)

    Article  ADS  Google Scholar 

  6. P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, S. Sridhar, Phys. Rev. Lett. 92, 127401 (2004)

    Article  ADS  Google Scholar 

  7. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Nature (London) 423, 604 (2003)

    Article  ADS  Google Scholar 

  8. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  9. N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)

    Article  ADS  Google Scholar 

  10. M.S. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S. Linden, M. Wegener, Nat. Mater. 7, 543 (2008)

    Article  ADS  Google Scholar 

  11. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)

    Article  ADS  Google Scholar 

  12. G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 32, 53 (2007)

    Article  ADS  Google Scholar 

  13. J.B. Pendry, Science 306, 1353 (2004)

    Article  ADS  Google Scholar 

  14. J. Kastel, M. Fleischhauer, S.F. Yelin, R.L. Walshworth, Phys. Rev. Lett. 99, 073602 (2007)

    Article  ADS  Google Scholar 

  15. J. Kastel, M. Fleischhauer, S.F. Yelin, R.L. Walshworth, Phys. Rev. A 79, 063818 (2009)

    Article  ADS  Google Scholar 

  16. D.E. Sikes, D.D. Yavuz, Phys, Rev. A 82, 011806(R) (2010)

    Article  ADS  Google Scholar 

  17. L.J. Wang, A. Kuzmich, A. Dogariu, Nature (London) 406, 227 (2000)

    Article  ADS  Google Scholar 

  18. A. Dogariu, A. Kuzmich, L.J. Wang, Phys. Rev. A 63, 053806 (2001)

    Article  ADS  Google Scholar 

  19. A.A. Sayem, M.M. Rahman, M.R.C. Mahdy, I. Jahangir, M.S. Rahman, Sci. Rep. 6, 25442 (2016)

    Article  ADS  Google Scholar 

  20. D. Gong, J. Mei, N. Li, Y. Shi, Mat. Res. Lett. 9, 115803 (2022)

    Google Scholar 

  21. M. Abbas, Rahmatullah, P. Zhang, Eur. Phys. Jr. Plus 138, 59 (2023)

  22. X. Yao, A. Belyanin, Nonlinear optics of graphene in a strong magnetic field. J. Phys. 25, 054203 (2013)

    Google Scholar 

  23. S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997)

    Article  ADS  Google Scholar 

  24. U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998)

    Article  ADS  Google Scholar 

  25. S.K. Lamoreaux, Rep. Prog. Phys. 68, 201 (2005)

    Article  ADS  Google Scholar 

  26. M. Bordag, U. Mohideen, G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rep. 353, 1 (2002)

    Article  ADS  Google Scholar 

  27. J. Yuan, J. Shu, L. Jiang, Opt. Express 28, 5367 (2020)

    Article  ADS  Google Scholar 

  28. E.V. Ponizovskaya, A.M. Bratkovsky, Appl. Phys. A 95, 1137 (2009)

    Article  ADS  Google Scholar 

  29. D.S.L. Abergel, V.I. Faloo, Phys. Rev. B 75, 155430 (2007)

    Article  ADS  Google Scholar 

  30. O. Kocharovskaya, Y. Rostovtsev, M.O. Scully, Phys. Rev. Lett. 86, 628 (2001)

    Article  ADS  Google Scholar 

  31. G.S. Agarwal, T.N. Dey, Phys. Rev. A 68, 063816 (2003)

    Article  ADS  Google Scholar 

  32. G.S. Agarwal, T.N. Dey, Phys. Rev. A 73, 043809 (2006)

    Article  ADS  Google Scholar 

  33. Z. Jiang, E.A. Henriksen, L.C. Tung, Y.J. Wang, M.E. Schwartz, M.Y. Han, P. Kim, H.L. Stormer, Phys. Rev. Lett. 98, 197403 (2007)

    Article  ADS  Google Scholar 

  34. S.A. Mikhailov, Phys. Rev. B 79(24), 241309 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.B. acknowledges the financial support provided by Hubei University of Automotive Technology in the form of a start-up research Grant (BK202212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muqaddar Abbas.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badshah, F., Zhou, Y., Rahmatullah et al. Negative refraction achieved by inducing chirality in monolayer graphene through Raman gain mechanism. Eur. Phys. J. Plus 138, 985 (2023). https://doi.org/10.1140/epjp/s13360-023-04595-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04595-w

Navigation