Skip to main content
Log in

Investigation of clay and neutron absorbers’ roles in the genesis and evolution of Oklo natural nuclear reactors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Since their discovery, the Oklo natural nuclear reactors were subject of many detailed field studies, sample analysis and criticality simulations. The present article is dedicated to advanced simulations of Oklo cores using a custom Python code to generalize and automate MCNP criticality calculations. The impacts of both the initial neutron absorbers and the clay fraction, which define the initial and evolving mineralogical environment, were studied by means of parametric simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. F. Gauthier-Lafaye, P. Holliger, P. Blanc, Natural fission reactors in the Franceville basin, Gabon: a review of the conditions and results of a “critical event” in a geologic system. Geochim. Cosmochim. Acta 60, 4831–4852 (1996). https://doi.org/10.1016/S0016-7037(96)00245-1

    Article  ADS  Google Scholar 

  2. F. Gauthier-Lafaye, F. Weber, The Francevillian (Lower Proterozoic) uranium ore deposits of Gabon. Econ. Geol. 84, 2267–2285 (1989). https://doi.org/10.2113/GSECONGEO.84.8.2267

    Article  Google Scholar 

  3. D. Mossman, Hydrocarbon habitat of the paleoproterozoic franceville series, Republic of Gabon. Energy Sources 23, 45–53 (2001). https://doi.org/10.1080/00908310151092137

    Article  Google Scholar 

  4. D. Mossman, F. Gauthier-Lafaye, S. Jackson, Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon. Precambrian Res. 137, 253–272 (2005). https://doi.org/10.1016/J.PRECAMRES.2005.03.005

    Article  ADS  Google Scholar 

  5. F. Gauthier-Lafaye, F. Weber, Les gisements d’uranium du Gabon et les réacteurs d’Oklo: Modèle métallogénique de gites à fortes teneurs du protérozoïque inférieur (Université Louis Pasteur, Strasbourg, 1986)

    Google Scholar 

  6. F. Gauthier-Lafaye, F. Weber, H. Ohmoto, Natural fission reactors of Oklo. Econ. Geol. 84, 2286–2295 (1989). https://doi.org/10.2113/GSECONGEO.84.8.2286

    Article  Google Scholar 

  7. F. Gauthier-Lafaye, Time constraint for the occurrence of uranium deposits and natural nuclear fission reactors in the Paleoproterozoic Franceville Basin (Gabon). Geol. Soc. Am. Mem. 198, 157–167 (2006). https://doi.org/10.1130/2006.1198(09)

    Article  Google Scholar 

  8. F. Gauthier-Lafaye, 2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa). C R Phys. 3, 839–849 (2002). https://doi.org/10.1016/S1631-0705(02)01351-8

    Article  ADS  Google Scholar 

  9. F. Gauthier-Lafaye, F. Weber, Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere. Precambrian Res. 120, 81–100 (2003). https://doi.org/10.1016/S0301-9268(02)00163-8

    Article  ADS  Google Scholar 

  10. J.R. Lancelot, A. Vitrac, C.J. Allegre, The Oklo natural reactor: age and evolution studies by UPb and RbSr systematics. Earth Planet Sci. Lett. 25, 189–196 (1975)

    Article  ADS  Google Scholar 

  11. F. Weber, (1968) Une série précambrienne du Gabon: le Francevillien. Sédimentologie, géochimie, relations avec les gites minéraux associés

  12. G. Baudin, C. Blain, R. Hagemann, M. Kremer, M. Lucas, L. Merlivat, R. Molina, G. Nief, F. Prost Marechal, F. Regnaud, E. Roth, Quelques données nouvelles sur les réactions nucléaires en chaîne qui se sont produites dans le gisement d’Oklo. C.R. Acad. Sci. 275, 2291–2294 (1972)

    Google Scholar 

  13. R. Bodu, H. Bouzigues, N. Morin, J. Pfiffelmann, Sur L’existence D’anomalies isotopiques rencontrees dans L’uranium du gabon. C. R. Acad. Sci. 275, 1731–1732 (1972)

    Google Scholar 

  14. M. Neuilly, J. Bussac, C. Frejacques, G. Nief, G. Vendryes, J. Yvon, Sur L’existence dans un passe recule D’une reaction en chaine naturelle de fissions, dans le gisement D’uranium D’oklo. C.R. Acad. Sci. 275, 1847–1849 (1972)

    Google Scholar 

  15. Bouzigues, H., Boyer, R.J.M., Seyve, C., Teulieres, P., 1975. Contribution to the solution of a scientific enigma. Symposium on the Oklo phenomenon; Libreville, Gabon; 23 Jun 1975; IAEA-SM--204/36, Contribution a la solution d’une enigme scientifique 237–243.

  16. S.-E. Bentridi, B. Gall, F. Gauthier-Lafaye, A. Seghour, D.-E. Medjadi, Inception and evolution of Oklo natural nuclear reactors. C.R. Geosci. 343, 738–748 (2011). https://doi.org/10.1016/j.crte.2011.09.008

    Article  ADS  Google Scholar 

  17. S.-E. Bentridi, B. Gall, F. Gauthier-Lafaye, A. Seghour, A. Pape, D.-E. Medjadi, Criticality of oklo natural reactors: realistic model of reaction zone 9. IEEE Trans. Nucl. Sci. (2013). https://doi.org/10.1109/TNS.2012.2227277

    Article  Google Scholar 

  18. Z. Bilanovic, A.A. Harms, The nonlinear dynamics of the Oklo natural reactor. Nuclear Sci. Eng. 91, 286–292 (2017). https://doi.org/10.13182/NSE85-A17305

    Article  ADS  Google Scholar 

  19. K.M. Cherif, A. Seghour, F.Z. Dehimi, Criticality of the reaction zone 9 of Oklo reactors revisited. Appl. Radiat. Isot. 149, 165–173 (2019). https://doi.org/10.1016/j.apradiso.2019.04.018

    Article  Google Scholar 

  20. R.T. Ibekwe, C.M. Cooling, A.J. Trainer, M.D. Eaton, Modeling the short-term and long-term behaviour of the Oklo natural nuclear reactor phenomenon. Progress Nuclear Energy 118, 103080 (2020). https://doi.org/10.1016/J.PNUCENE.2019.103080

    Article  Google Scholar 

  21. R. Naudet, (1991) Oklo : des réacteurs nucléaires fossiles : étude physique, EDP Sciences. ed. Eyrolles

  22. Y.V. Petrov, The natural nuclear reactor in Oklo. Usp. Fiz. Nauk 123, 477–486 (1977)

    Article  Google Scholar 

  23. Y.V. Petrov, A.I. Nazarov, M.S. Onegin, VYu. Petrov, E.G. Sakhnovskii, Neutron-physical calculation of a fresh zone in the natural nuclear reactor at Oklo. At. Energy 98(4), 296–305 (2005). https://doi.org/10.1007/S10512-005-0209-3

    Article  Google Scholar 

  24. J.C. Ruffenach, R. Hagemann, E. Roth, Isotopic abundances measurements a key to understanding the oklo phenomenon. Zeitschrift Naturforschung Sect. A J. Phys. Sci. 35, 171–179 (1980). https://doi.org/10.1515/ZNA-1980-0202

    Article  ADS  Google Scholar 

  25. J.C. Ruffenach, J. Menes, C. Devillers, M. Lucas, R. Hagemann, Etudes chimiques et isotopiques de l’uranium, du plomb et de plusieurs produits de fission dans un echantillon de minerai du reacteur naturel d’Oklo. Earth Planet Sci. Lett. 30, 94–108 (1976)

    Article  ADS  Google Scholar 

  26. UNESCO list [WWW Document], (2023) Le site fossilifère de Moulendé et la pile nucléaire de Bangombé - UNESCO Centre du patrimoine mondial. URL https://whc.unesco.org/fr/listesindicatives/6590/. Accessed 6 Nov 23

  27. B. Gall, (2023) Parallel between natural Oklo reaction zones and industrial reactors dynamics. Radiat Prot Dosimetry

  28. A.P. Meshik, C.M. Hohenberg, O.V. Pravdivtseva, Record of cycling operation of the natural nuclear reactor in the Oklo/Okelobondo Area in Gabon. Phys. Rev. Lett. 93, 182302 (2004). https://doi.org/10.1103/PhysRevLett.93.182302

    Article  ADS  Google Scholar 

  29. Brewer, R., Harmon, C.D., Busch, R.D., Briesmeister, J.F., Forster, R.A., Goorley, T., 2009. Criticality calculations with MCNP5: A Primer.

  30. Python Software Foundation 2016. website: https://www.python.org. Accessed 6 Aug 2021

  31. G. Van Rossum, F. Drake, Python Tutorial, 2012 (Python Software Foudnation)

  32. H. Hidaka, F. Gauthier-Lafaye, Redistribution of fissiogenic and non-fissiogenic REE, Th and U in and around natural fission reactors at Oklo and Bangombé, Gabon. Geochim. Cosmochim. Acta 64, 2093–2108 (2000). https://doi.org/10.1016/S0016-7037(00)00364-1

    Article  ADS  Google Scholar 

  33. H. Hidaka, A. Masudai, I. Fujii, H. Shimizu’, Abundance of fission elements in a genic and uranium pre-reactor natural rare-earth ore sample from Oklo. Geochem. J. 22, 47 (1988)

    Article  ADS  Google Scholar 

  34. J.C. Ruffenach, M. Lucas, J. Menes, R. Hagemann, G. Nief, (1975) Analyses isotopiques fines des produits de fission et determination des, in: AIEA (Ed.), The Oklo Phenomenon, IAEA-SM-204. AIEA, Libreville, pp. 371–384

  35. X-5 Monte Carlo Team, i, (2003) MCNP - Version 5, Vol. I: overview and theory. LA-UR-03-1987 (2003)

  36. D. McGreggor, Mastering matplotlib: a practical guide that takes you beyond the basics of matplotlib and gives solutions to plot complex data, (2015)

  37. J. Salas, C. Ayora, Groundwater chemistry of the Okélobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modelling. J Contam Hydrol 69, 115–137 (2004). https://doi.org/10.1016/S0169-7722(03)00140-2

    Article  Google Scholar 

  38. P. Toulhoat, J. Paul Gallien, D. Louvat, V. Moulin, R. GuCrin, E. Ledoux, I. Gurban, J.A. Smellie, A. Winberg, Preliminary studies of groundwater flow and migration of uranium isotopes around the Oklo natural reactors (Gabon). ELSEVIEi Hydrol. J. Contam. Hydrol. 21(1–4), 3–17 (1996)

    Article  ADS  Google Scholar 

  39. R.J. Chauvet, Description du gisement d’uranium d’Oklo. IAEA. Sym. 204, 53–66 (1975)

    Google Scholar 

  40. J. Janeczek, Mineralogy and geochemistry of natural fission reactors in Gabon. Rev. Mineral Geochem. 38, 320–392 (1999). https://doi.org/10.1515/9781501509193-012/HTML

    Article  Google Scholar 

  41. ENDF/B-VII.1 NNDC, B.N.L., (2011) Evaluated Nuclear Data File (ENDF) Retrieval & Plotting [WWW Document]. ENDF/B-VII.1. URL https://www.nndc.bnl.gov/sigma/. Accessed 12 Jan 2021

Download references

Author information

Authors and Affiliations

Authors

Contributions

SEB: Conceptualization, Methodology, Software, Writing—Original Draft. BG: Conceptualization, Software, Supervision, Writing—Review. HH: Resources, Validation. DB: Visualisation, Writing—Review. NA: Conceptualization. Writing—Review. FGL: Conceptualization, Supervision.

Corresponding author

Correspondence to S. E. Bentridi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentridi, S.E., Gall, B., Hidaka, H. et al. Investigation of clay and neutron absorbers’ roles in the genesis and evolution of Oklo natural nuclear reactors. Eur. Phys. J. Plus 138, 646 (2023). https://doi.org/10.1140/epjp/s13360-023-04279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04279-5

Navigation