Skip to main content
Log in

An internal Lorentz symmetry induces the background Lorentz symmetry in the dissipative dynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We show that a dissipative field theory with background Lorentz symmetry underlies the field theory with global \(U(1)\times SO(1,1)\) symmetry constructed on a hyperbolic ring; the theory represents a dissipative model for a bipartite system compound of Klein-Gordon fields with different masses; the infrared limit corresponds to the usual dissipative field theory with a constant dissipative parameter, and with broken background Lorentz symmetry; in the ultraviolet limit the fields behave as free fields with unobservable dissipative effects. In this hyperbolic ring-based formulation, the observables correspond to Hermitian quantities, encoding two real quantities, which are appropriate for describing bipartite system; thus, the Lagrangian is constructed as a Hermitian \(U(1)\times SO(1,1)\) invariant quantity, and the two real potentials are identified with the subsystem-plus-reservoir system. The potentials can be identified with elliptic and hyperbolic paraboloids by adjusting a real parameter that is interpolating between pure U(1) and pure SO(1, 1) symmetries. At the end we address the problem of constructing a propagator on the hyperbolic ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. T. Miura, Y. Akamatsu, M. Asakawa, A. Rothkopf, Shear viscosity of strongly coupled N=4 supersymmetric yang-mills plasma. Phys. Rev. D 101, 034011 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Policastro, D.T. Son, A.O. Starinets, Shear viscosity of strongly coupled N=4 supersymmetric yang-mills plasma. Phys. Rev. Lett. 87, 081601 (2001)

    Article  ADS  Google Scholar 

  3. P. Banerjee, B. Sathiapalan, Holographic Brownian motion in 1+1 dimensions. Nucl. Phys. B 884, 74 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M.C. Baldiotti, R. Fresneda, D.M. Gitman, Quantization of the damped harmonic oscillator revisited. Phys. Lett. A 375, 1630 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. Taylor, Generalized entanglement entropy. JHEP 1607, 040 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Botta-Cantcheff, A.L. Gadelha, D.F.Z. Marchioro, D.L. Nedel, Entanglement from dissipation and holographic interpretation. Eur. Phys. Jour. C 78, 105 (2018)

    Article  ADS  Google Scholar 

  7. R. Cartas-Fuentevilla, J. Berra-Montiel, O. Meza-Aldama, Hyperbolic ring based formulation for thermo field dynamics, quantum dissipation, entanglement, and holography. Eur. Phys. J. C 80, 603 (2020). https://doi.org/10.1140/epjc/s10052-020-8161-x

    Article  ADS  Google Scholar 

  8. S. Ulrych, The Poincaré mass operator in terms of a hyperbolic algebra. Phys. Lett. B 612, 89 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S. Ulrych, Symmetries in the hyperbolic Hilbert space. Phys. Lett. B 618, 233 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Emam, Split-complex representation of the universal hypermultiplet. Phys. Rev. D 84, 045016 (2011)

    Article  ADS  Google Scholar 

  11. G.W. Gibbons, M.B. Green, M.J. Perry, Instantons and seven-branes in type IIB superstring theory. Phys. Lett. B 370, 37 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Cartas-Fuentevilla, O. Meza-Aldama, Spontaneous symmetry breaking, and strings defects in hypercomplex gauge theories. Eur. Phys. Jour. C. 76(2), 98 (2016)

    Article  ADS  Google Scholar 

  13. R. Cartas-Fuentevilla, Deformations of thermo algebras and of Fock spaces on a ring, and open quantum systems. J. Phys. A: Math. Theor. 54, 425203 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Celeghini, M. Rasetti, G. Vitiello, Quantum dissipation. Ann. Phys. 215, 156 (1992)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sistema Nacional de Investigadores (México). Juarez-Dominguez acknowledges the financial support by CONACYT (Mexico) under Grant No. CB-2014-01/240781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cartas-Fuentevilla.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartas-Fuentevilla, R., Juarez-Dominguez, A.J.C. An internal Lorentz symmetry induces the background Lorentz symmetry in the dissipative dynamics. Eur. Phys. J. Plus 138, 217 (2023). https://doi.org/10.1140/epjp/s13360-023-03839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03839-z

Navigation