Skip to main content
Log in

Study of the radiation tolerance of MgFe2O4 by XRD, TEM, Mössbauer, and EPR spectroscopy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Materials with high radiation resistance are a major area of interest in the field of nuclear industry due to their wide range of applications. In this regard, this study investigates the radiation tolerance of a MgFe2O4 sample successfully synthesized via the sol–gel route. Therefore, an investigation of the structural and morphological characterizations of MgFe2O4 revealed a significantly high radiation resistance. Furthermore, Mössbauer spectrometry detected a cation redistribution with irradiation, while EPR showed the creation of oxygen vacancy defects by irradiation. Thus, the results presented in this study highlight the usefulness of the MgFe2O4 as a promising material for the development of highly efficient devices in the nuclear industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Ibarra, D. Bravo, F.J. Lopez, F.A. Garner, High-dose neutron irradiation of MgAl2O4 spinel: effects of post-irradiation thermal annealing on EPR and optical absorption. J. Nucl. Mater 336, 156–162 (2005)

    Article  ADS  Google Scholar 

  2. F.C. Klaassen, K. Bakker, R.P.C. Schram, R. Klein-Meulekamp, R. Conrad, J. Somers, R.J.M. Konings, Post irradiation examination of irradiated americium oxide and uranium dioxide in magnesium aluminate spinel. J. Nucl. Mater. 319, 108 (2003)

    Article  ADS  Google Scholar 

  3. T. Wiss, R.J.M. Konings, C.T. Walker, H. Thiele, Microstructure characterisation of irradiated Am-containing MgAl2O4 (EFTTRA-T4). J. Nucl. Mater. 320, 85 (2003)

    Article  ADS  Google Scholar 

  4. V.T. Gritsyna, Y.G. Kazarinov, V.A. Kobyakov, K.E. Sickafus, The origin of radiation resistance of magnesium aluminate spinel. MRS Online Proc. Libr. 792, 359–364 (2003)

    Article  Google Scholar 

  5. Z. Li, S.-K. Chan, F.A. Garner, R.C. Bradt, Elastic stability of high dose neutron irradiated spinel. J. Nucl. Mater. 219, 139–142 (1995)

    Article  ADS  Google Scholar 

  6. R.M. Lokhande, V. Vinayak, S.V. Mukhamale, P.P. Khirade, Gamma radiation shielding characteristics of various spinel ferrite nanocrystals: a combined experimental and theoretical investigation. RSC Adv. 11, 7925–7937 (2021)

    Article  ADS  Google Scholar 

  7. K. Kefeni, B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: review. Sustain. Mater. Technol. 23, e00140 (2020)

    Google Scholar 

  8. K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterization and applications in electronic device. Mater Sci Eng B 215, 37–55 (2017)

    Article  Google Scholar 

  9. J. Zhang, J. Lian, A.F. Fuentes, F. Zhang, M. Lang, F. Lu, R.C. Ewing, Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0.65Zr0.35)2O7. Appl Phys Lett 94, 243110 (2009)

    Article  ADS  Google Scholar 

  10. R.A. Andrievskii, Radiation stability of nanomaterials. Nanotechnol. Russ. 6, 357–369 (2011)

    Article  Google Scholar 

  11. A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91–112 (2016)

    Article  Google Scholar 

  12. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Recoilless-fraction ratios for 57Fe in octahedral and tetrahedral sites of a spinel and a garnet. Phys. Rev. 183, 383 (1969)

    Article  ADS  Google Scholar 

  13. S. Raghuvanshi, P. Tiwari, S.N. Kane, D.K. Avasthi, F. Mazaleyrat, T. Tatarchuk, I. Mironyuk, Dual control on structure and magnetic properties of mg ferrite: role of swift heavy ion irradiation. J. Magn. Magn. Mater. 471, 521–528 (2019)

    Article  ADS  Google Scholar 

  14. H.M. Rietveld, ’A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  15. T. Roisnel, J. Rodriguez-Carvajal, ‘Computer Program FULLPROF’, LLB-LCSIM (2003)

  16. I. Chihi, M. Baazaoui, S. Mahjoub, W. Cheikhrouhou-Koubaa, M. Oumezzine, Kh. Farah, Study of the magnetic and magnetocaloric properties of new perovskite-type materials: La0.6Ba0.2Sr0.2Mn1−xFexO3. Appl. Phys. A 125, 1–7 (2012)

    Article  Google Scholar 

  17. A. Guinier, Théorie et Technique de la Radiocristallographie, 3rd edn. (Dunod, Paris, 1964), p. 482

    Google Scholar 

  18. A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K.M. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70-xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2018)

    Article  Google Scholar 

  19. S. Kayaa, S. Abubakara, E. Yilmaz, ‘Co-60 gamma irradiation influences on device characteristics of n-SnO2/p-Si heterojunction diodes. Nuclear Inst. Methods Phys. Res. B 445, 63–68 (2019)

    Article  ADS  Google Scholar 

  20. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B 407, 795–804 (2012)

    Article  ADS  Google Scholar 

  21. T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, K.E. Sickafus, Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90, 263115 (2007)

    Article  ADS  Google Scholar 

  22. V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas, ‘Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124–10137 (2016)

    Article  ADS  Google Scholar 

  23. P.P. Naik, R.B. Tangsali, B. Sonaye, S. Sugur, Radiation induced structural and magnetic transformations in nanoparticle MnxZn(1–x)Fe2O4 ferrites. J. Magn. Magn. Mater. 385, 377–385 (2015)

    Article  ADS  Google Scholar 

  24. A. Karim, S.E. Shirsath, S.J. Shukla, K.M. Jadhav, Gamma irradiation induced damage creation on the cation distribution, structural and magnetic properties in Ni–Zn ferrite. Nucl. Inst. Methods Phys. Res. B 268, 2706–2711 (2010)

    Article  ADS  Google Scholar 

  25. A. Ibarra, D. Bravo, M.A. Garcia, J. Llopis, F.J. Lopez, F.A. Garner, Dose dependence of neutron irradiation effects on MgAl2O4 spinels. J. Nucl. Mater. 258, 1902–1907 (1998)

    Article  ADS  Google Scholar 

  26. S. Rana, R. Chawla, R. Kumar, S. Singh, A. Zheleva, Y. Dimitrova, V. Gadjeva, R. Arora, S. Sultana, R.K. Sharma, Electron paramagnetic resonance spectroscopy in radiation research: current status and perspectives. J. Pharm. Bioallied Sci. 2, 80–87 (2010)

    Article  Google Scholar 

  27. O. Hassayoun, M. Baazaoui, M.R. Laouyenne, F. Hosni, E.K. Hlil, M. Oumezzine, Kh. Farah, Magnetocaloric effect and electron paramagnetic resonance studies of the transition from ferromagnetic to paramagnetic in La0.8Na0.2Mn1-xNixO3 (0≤x≤0.06). J. Phys. Chem. Solids 135, 109058 (2019)

    Article  Google Scholar 

  28. B. Kanrar, N. Pathak, C. Nayak, C.L. Prajapat, R.M. Kadam, S.N. Jha, D. Bhattacharyya, R. Gurazada, N.L.L. Misra, New thorium-bismuth oxide solid solutions with oxygen vacancy induced tunable ferromagnetism. J. Mater. Chem. C 5, 8836–8846 (2017)

    Article  Google Scholar 

  29. H. Tan, Z. Zhao, M. Niu, C. Mao, D. Cao, D. Cheng, P. Feng, Z. Sun, A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6, 10216 (2014)

    Article  ADS  Google Scholar 

  30. I.M. Hamada, X-ray diffraction and IR absorption in the system Co0.6Zn0.4MnxFe2-xO4 before and after γ-irradiation. J. Magn. Magn. Mater. 271, 318–325 (2004)

    Article  ADS  Google Scholar 

  31. N. Okasha, S.I. El Dek, M.K. Abdelmaksoud, D.N. Ghaffar, Enhanced structure and magnetic properties of doped nanomagnetite by γ-irradiation. J. Alloy. Compd. 737, 356–364 (2018)

    Article  Google Scholar 

  32. A.V. Raut, D.V. Kurmude, D.R. Shengule, K.M. Jadhav, Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles. Mater. Res. Bull. 63, 123–128 (2015)

    Article  Google Scholar 

  33. O.M. Hemeda, M. El-Saadawy, Effect of gamma irradiation on the structural properties and diffusion coefficient in Co–Zn ferrite. J. Magn. Magn. Mater. 256, 63–68 (2003)

    Article  ADS  Google Scholar 

  34. L.A. Kappers, O.R. Gilliam, S.M. Evans, L.E. Halliburton, N.C. Giles, EPR and optical study of oxygen and zinc vacancies in electron-irradiated ZnO. Nucl. Inst. Methods Phys. Res. B 266, 2953–2957 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihi, I., Baazaoui, M., Greneche, J.M. et al. Study of the radiation tolerance of MgFe2O4 by XRD, TEM, Mössbauer, and EPR spectroscopy. Eur. Phys. J. Plus 137, 570 (2022). https://doi.org/10.1140/epjp/s13360-022-02772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02772-x

Navigation